Upload deepseek_markdown_20250816_259d1f.md
Browse files
deepseek_markdown_20250816_259d1f.md
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- world-model
|
| 4 |
+
- vjepa
|
| 5 |
+
- video-prediction
|
| 6 |
+
- diffusion
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# VJEPA Cognitive World Model
|
| 10 |
+
|
| 11 |
+
Hierarchical video-text model combining:
|
| 12 |
+
1. V-JEPA inspired video encoder
|
| 13 |
+
2. Contextual reasoning via transformer fusion
|
| 14 |
+
3. Diffusion-based future prediction
|
| 15 |
+
|
| 16 |
+
## Usage
|
| 17 |
+
```python
|
| 18 |
+
from transformers import AutoTokenizer, pipeline
|
| 19 |
+
|
| 20 |
+
model = VideoJEPA.from_pretrained("your-username/vjepa-world-model")
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 22 |
+
|
| 23 |
+
video = torch.randn(1, 3, 16, 112, 112) # (B, C, T, H, W)
|
| 24 |
+
text = tokenizer("Person walking towards door", return_tensors="pt")
|
| 25 |
+
|
| 26 |
+
# Predict next 8 frames
|
| 27 |
+
future_frames = model.generate(video, text, timesteps=100)
|