Upload PatentTEB model: patembed-large
Browse files- 1_Pooling/config.json +10 -0
- README.md +168 -0
- config.json +24 -0
- config_sentence_transformers.json +64 -0
- model.safetensors +3 -0
- model_info.json +15 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-nc-sa-4.0
|
| 3 |
+
library_name: sentence-transformers
|
| 4 |
+
tags:
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- feature-extraction
|
| 8 |
+
- patent
|
| 9 |
+
- embeddings
|
| 10 |
+
- mteb
|
| 11 |
+
language:
|
| 12 |
+
- en
|
| 13 |
+
pipeline_tag: sentence-similarity
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# patembed-large
|
| 17 |
+
|
| 18 |
+
This is a **sentence-transformers** model trained specifically for **patent text embeddings**. It is part of the **PatenTEB** project, which provides state-of-the-art models for patent document understanding and retrieval.
|
| 19 |
+
|
| 20 |
+
**Note:** This model uses task-specific instruction prompts during inference for optimal performance.
|
| 21 |
+
|
| 22 |
+
## Model Details
|
| 23 |
+
|
| 24 |
+
- **Model Type**: Sentence Transformer
|
| 25 |
+
- **Base Architecture**: bert-for-patents (344M params, domain-pretrained on patent corpora)
|
| 26 |
+
- **Parameters**: 344M
|
| 27 |
+
- **Number of Layers**: 24
|
| 28 |
+
- **Hidden Size**: 1024
|
| 29 |
+
- **Embedding Dimension**: 1024
|
| 30 |
+
- **Max Sequence Length**: 512 tokens
|
| 31 |
+
- **Language**: English
|
| 32 |
+
- **License**: CC BY-NC-SA 4.0
|
| 33 |
+
|
| 34 |
+
## Model Description
|
| 35 |
+
|
| 36 |
+
Flagship encoder initialized from Bert-for-Patents with 24-layer transformer architecture.
|
| 37 |
+
|
| 38 |
+
This model is part of the **patembed family**, developed through multi-task learning on 13 training tasks from the PatenTEB benchmark. For detailed information about the training methodology, architecture, and comprehensive evaluation results, please refer to our paper.
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
## Usage
|
| 43 |
+
|
| 44 |
+
### Using Sentence Transformers
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
from sentence_transformers import SentenceTransformer
|
| 48 |
+
|
| 49 |
+
# Load the model
|
| 50 |
+
model = SentenceTransformer('datalyes/patembed-large')
|
| 51 |
+
|
| 52 |
+
# Encode patent texts
|
| 53 |
+
patent_texts = [
|
| 54 |
+
"A method for manufacturing semiconductor devices...",
|
| 55 |
+
"An apparatus for processing chemical compounds...",
|
| 56 |
+
]
|
| 57 |
+
embeddings = model.encode(patent_texts)
|
| 58 |
+
|
| 59 |
+
# Compute similarity
|
| 60 |
+
from sentence_transformers import util
|
| 61 |
+
similarity = util.cos_sim(embeddings[0], embeddings[1])
|
| 62 |
+
print(f"Similarity: {similarity.item():.4f}")
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
### Using Transformers
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
from transformers import AutoTokenizer, AutoModel
|
| 69 |
+
import torch
|
| 70 |
+
import torch.nn.functional as F
|
| 71 |
+
|
| 72 |
+
# Load model and tokenizer
|
| 73 |
+
tokenizer = AutoTokenizer.from_pretrained('datalyes/patembed-large')
|
| 74 |
+
model = AutoModel.from_pretrained('datalyes/patembed-large')
|
| 75 |
+
|
| 76 |
+
def mean_pooling(model_output, attention_mask):
|
| 77 |
+
token_embeddings = model_output[0]
|
| 78 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 79 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 80 |
+
|
| 81 |
+
# Tokenize and encode
|
| 82 |
+
texts = ["A method for manufacturing semiconductor devices..."]
|
| 83 |
+
encoded = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
|
| 84 |
+
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
model_output = model(**encoded)
|
| 87 |
+
embeddings = mean_pooling(model_output, encoded['attention_mask'])
|
| 88 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
### Patent Retrieval Example
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
from sentence_transformers import SentenceTransformer, util
|
| 95 |
+
|
| 96 |
+
model = SentenceTransformer('datalyes/patembed-large')
|
| 97 |
+
|
| 98 |
+
# Query patent
|
| 99 |
+
query = "Method for reducing power consumption in mobile devices"
|
| 100 |
+
|
| 101 |
+
# Candidate patents
|
| 102 |
+
candidates = [
|
| 103 |
+
"A power management system for portable electronic devices...",
|
| 104 |
+
"Chemical composition for battery manufacturing...",
|
| 105 |
+
"Method for wireless data transmission in mobile networks...",
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
# Encode and retrieve
|
| 109 |
+
query_emb = model.encode(query)
|
| 110 |
+
candidate_embs = model.encode(candidates)
|
| 111 |
+
|
| 112 |
+
# Compute similarities
|
| 113 |
+
scores = util.cos_sim(query_emb, candidate_embs)[0]
|
| 114 |
+
|
| 115 |
+
# Get ranked results
|
| 116 |
+
results = [(candidates[i], scores[i].item()) for i in range(len(candidates))]
|
| 117 |
+
results.sort(key=lambda x: x[1], reverse=True)
|
| 118 |
+
|
| 119 |
+
for patent, score in results:
|
| 120 |
+
print(f"Score: {score:.4f} - {patent[:100]}...")
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
## Intended Use
|
| 124 |
+
|
| 125 |
+
This model is designed for patent-specific tasks including:
|
| 126 |
+
- Patent search and retrieval
|
| 127 |
+
- Prior art search
|
| 128 |
+
- Patent classification and clustering
|
| 129 |
+
- Technology landscape analysis
|
| 130 |
+
|
| 131 |
+
For detailed training methodology, evaluation protocols, and performance analysis, please refer to our paper.
|
| 132 |
+
|
| 133 |
+
## Citation
|
| 134 |
+
|
| 135 |
+
If you use this model, please cite our paper:
|
| 136 |
+
|
| 137 |
+
```bibtex
|
| 138 |
+
@misc{ayaou2025patentebcomprehensivebenchmarkmodel,
|
| 139 |
+
title={PatenTEB: A Comprehensive Benchmark and Model Family for Patent Text Embedding},
|
| 140 |
+
author={Iliass Ayaou and Denis Cavallucci},
|
| 141 |
+
year={2025},
|
| 142 |
+
eprint={2510.22264},
|
| 143 |
+
archivePrefix={arXiv},
|
| 144 |
+
primaryClass={cs.CL},
|
| 145 |
+
url={https://arxiv.org/abs/2510.22264}
|
| 146 |
+
}
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
**Paper**: [PatenTEB on arXiv](https://arxiv.org/abs/2510.22264)
|
| 150 |
+
|
| 151 |
+
## License
|
| 152 |
+
|
| 153 |
+
This model is released under the **Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)** license.
|
| 154 |
+
|
| 155 |
+
**Key Terms:**
|
| 156 |
+
- ✅ You can use, share, and adapt the model
|
| 157 |
+
- ✅ You must give appropriate credit
|
| 158 |
+
- ❌ You may not use the model for commercial purposes
|
| 159 |
+
- ⚠️ If you adapt or build upon this model, you must distribute under the same license
|
| 160 |
+
|
| 161 |
+
For full license details: https://creativecommons.org/licenses/by-nc-sa/4.0/
|
| 162 |
+
|
| 163 |
+
## Contact
|
| 164 |
+
|
| 165 |
+
- **Authors**: Iliass Ayaou, Denis Cavallucci
|
| 166 |
+
- **Institution**: ICUBE Laboratory, INSA Strasbourg
|
| 167 |
+
- **GitHub**: [PatentTEB/PatentTEB](https://github.com/iliass-y/patenteb)
|
| 168 |
+
- **HuggingFace**: [datalyes](https://huggingface.co/datalyes)
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 1024,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 4096,
|
| 12 |
+
"layer_norm_eps": 1e-12,
|
| 13 |
+
"max_position_embeddings": 512,
|
| 14 |
+
"model_type": "bert",
|
| 15 |
+
"num_attention_heads": 16,
|
| 16 |
+
"num_hidden_layers": 24,
|
| 17 |
+
"pad_token_id": 0,
|
| 18 |
+
"position_embedding_type": "absolute",
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.55.2",
|
| 21 |
+
"type_vocab_size": 2,
|
| 22 |
+
"use_cache": true,
|
| 23 |
+
"vocab_size": 39859
|
| 24 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "2.2.2",
|
| 5 |
+
"transformers": "4.55.2",
|
| 6 |
+
"pytorch": "2.8.0+cu128"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"retrieval_IN": {
|
| 10 |
+
"q_text": "encode query for same document retrieval: ",
|
| 11 |
+
"pos_text": "encode document for same retrieval: "
|
| 12 |
+
},
|
| 13 |
+
"retrieval_OUT": {
|
| 14 |
+
"q_text": "encode query for different document retrieval: ",
|
| 15 |
+
"pos_text": "encode document for different retrieval: "
|
| 16 |
+
},
|
| 17 |
+
"retrieval_MIXED": {
|
| 18 |
+
"q_text": "encode query for mixed document retrieval: ",
|
| 19 |
+
"pos_text": "encode document for mixed retrieval: "
|
| 20 |
+
},
|
| 21 |
+
"retrieval_inventor": {
|
| 22 |
+
"q_text": "encode query for same inventor document retrieval: ",
|
| 23 |
+
"pos_text": "encode document for same inventor retrieval: "
|
| 24 |
+
},
|
| 25 |
+
"title2full": {
|
| 26 |
+
"title": "encode title query for document retrieval: ",
|
| 27 |
+
"full_text": "encode document for retrieval: "
|
| 28 |
+
},
|
| 29 |
+
"problem2full": {
|
| 30 |
+
"problem": "encode problem query for document retrieval: ",
|
| 31 |
+
"full_text": "encode document for retrieval: "
|
| 32 |
+
},
|
| 33 |
+
"effect2full": {
|
| 34 |
+
"effect": "encode effect query for document retrieval: ",
|
| 35 |
+
"full_text": "encode document for retrieval: "
|
| 36 |
+
},
|
| 37 |
+
"effect2substance": {
|
| 38 |
+
"effect": "encode effect query for substance retrieval: ",
|
| 39 |
+
"substance": "encode substance for retrieval: "
|
| 40 |
+
},
|
| 41 |
+
"problem2solution": {
|
| 42 |
+
"problem": "encode problem query for solution retrieval: ",
|
| 43 |
+
"solution": "encode solution for retrieval: "
|
| 44 |
+
},
|
| 45 |
+
"para_problem": {
|
| 46 |
+
"text1": "encode problem for problem paraphrase: ",
|
| 47 |
+
"text2": "encode problem for problem paraphrase: "
|
| 48 |
+
},
|
| 49 |
+
"para_solution": {
|
| 50 |
+
"text1": "encode solution for solution paraphrase: ",
|
| 51 |
+
"text2": "encode solution for solution paraphrase: "
|
| 52 |
+
},
|
| 53 |
+
"class_text2ipc3": "encode document for ipc classification: ",
|
| 54 |
+
"class_bloom": "encode document for bloom prediction classification: ",
|
| 55 |
+
"class_nli_oldnew": {
|
| 56 |
+
"q_text": "encode citing document for pair classification: ",
|
| 57 |
+
"t_text": "encode cited document for pair classification: "
|
| 58 |
+
},
|
| 59 |
+
"clusters_ext_full_ipc": "encode document for same ipc clustering: ",
|
| 60 |
+
"clusters_inventor": "encode document for same inventors clustering: "
|
| 61 |
+
},
|
| 62 |
+
"default_prompt_name": null,
|
| 63 |
+
"similarity_fn_name": "cosine"
|
| 64 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:234ea36a876fe5d5c416c1cbaad6f7221e17861fadd6481f0b96588fdc1ca482
|
| 3 |
+
size 1378856808
|
model_info.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"display_name": "patembed-large",
|
| 3 |
+
"source_folder": "train_v4/runs/bert-for-patents-20250821_085708-360417_asym_prompt_all_1e5_bs_32_ga4_bs_nd",
|
| 4 |
+
"source_path": "/media/iayaou01/Extreme SSD/patembed_artifacts/patembed_release_bundle/train_v4/runs/bert-for-patents-20250821_085708-360417_asym_prompt_all_1e5_bs_32_ga4_bs_nd",
|
| 5 |
+
"output_path": "/media/iayaou01/Extreme SSD/patembed_artifacts/patembed_release_bundle/models_for_release/patembed-large",
|
| 6 |
+
"specifications": {
|
| 7 |
+
"params": "344M",
|
| 8 |
+
"layers": 24,
|
| 9 |
+
"hidden_size": 1024,
|
| 10 |
+
"embedding_dim": 1024,
|
| 11 |
+
"base_model": "bert-for-patents (344M params, domain-pretrained on patent corpora)",
|
| 12 |
+
"max_seq_length": 512,
|
| 13 |
+
"description": "Flagship encoder initialized from Bert-for-Patents with 24-layer transformer architecture."
|
| 14 |
+
}
|
| 15 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|