πͺ© DISCO
Collection
Document Intelligence Suite for Comparative Observations
β’
8 items
β’
Updated
image
imagewidth (px) 136
4.13k
|
|---|
A balanced mini subset of the ICDAR (International Conference on Document Analysis and Recognition) dataset with 50 samples per language. Includes actual document images and ground truth OCR text.
βββ README.md
βββ icdar_mini_index.json # Dataset metadata
βββ icdar_mini_Arabic.json # Language-specific data
βββ icdar_mini_Bangla.json
βββ ...
βββ images/
βββ tr_img_00001.jpg
βββ tr_img_00002.jpg
βββ ... (500 image files)
Each language subset is stored as a separate JSON file, and corresponding images are in the images/ directory.
Each sample is a row in the dataset with the following columns:
image: Document imageground_truth: OCR ground truth textlanguage: Language of the document (e.g., "Latin", "Arabic", etc.)sample_id: Unique identifier for the sampleExample sample:
{
"sample_id": "icdar_tr_img_07848",
"image_path": "images/tr_img_07848.jpg",
"ground_truth": "Text content...",
"metadata": {
"dataset": "ICDAR",
"language": "Latin",
"num_text_lines": 49,
"image_size": [3264, 2448]
}
}
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("kenza-ily/icdar-mini")
# Access a sample
sample = dataset["train"][0]
print(f"Image: {sample['image']}")
print(f"Ground Truth: {sample['ground_truth']}")
print(f"Language: {sample['language']}")
print(f"Sample ID: {sample['sample_id']}")
# Iterate through samples by language
for sample in dataset["train"]:
if sample['language'] == 'Latin':
print(f"{sample['sample_id']}: {sample['ground_truth'][:50]}...")
Please cite the original ICDAR dataset if you use this subset in your research.
This subset follows the original ICDAR dataset license.