Update custom model files, README, and requirements
Browse files- .gitattributes +0 -1
- README.md +263 -78
- asr_pipeline.py +164 -54
.gitattributes
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 3 |
tokenizer_config.json -filter -diff -merge text
|
| 4 |
-
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 3 |
tokenizer_config.json -filter -diff -merge text
|
|
|
README.md
CHANGED
|
@@ -1,82 +1,267 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
tags:
|
| 4 |
-
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
datasets:
|
| 6 |
+
- speechbrain/LoquaciousSet
|
| 7 |
+
base_model:
|
| 8 |
+
- zai-org/GLM-ASR-Nano-2512
|
| 9 |
+
- Qwen/Qwen3-0.6B
|
| 10 |
+
pipeline_tag: automatic-speech-recognition
|
| 11 |
tags:
|
| 12 |
+
- asr
|
| 13 |
+
- speech-recognition
|
| 14 |
+
- audio
|
| 15 |
+
- qwen
|
| 16 |
+
- glm-asr
|
| 17 |
+
library_name: transformers
|
| 18 |
---
|
| 19 |
|
| 20 |
+
# Tiny Audio
|
| 21 |
+
|
| 22 |
+
A speech recognition model trained in 24 hours on a single GPU for ~$12. Built with [Tiny Audio](https://github.com/alexkroman/tiny-audio)—a minimal, hackable ASR framework.
|
| 23 |
+
|
| 24 |
+
## Quick Start
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
from transformers import pipeline
|
| 28 |
+
|
| 29 |
+
pipe = pipeline("automatic-speech-recognition", model="mazesmazes/tiny-audio", trust_remote_code=True)
|
| 30 |
+
result = pipe("audio.wav")
|
| 31 |
+
print(result["text"])
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
## Usage Examples
|
| 35 |
+
|
| 36 |
+
### Basic Transcription
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from transformers import pipeline
|
| 40 |
+
|
| 41 |
+
pipe = pipeline("automatic-speech-recognition", model="mazesmazes/tiny-audio", trust_remote_code=True)
|
| 42 |
+
|
| 43 |
+
# From file
|
| 44 |
+
result = pipe("audio.wav")
|
| 45 |
+
print(result["text"])
|
| 46 |
+
|
| 47 |
+
# From URL
|
| 48 |
+
result = pipe("https://example.com/audio.mp3")
|
| 49 |
+
|
| 50 |
+
# From numpy array (must be 16kHz)
|
| 51 |
+
import numpy as np
|
| 52 |
+
audio = np.random.randn(16000).astype(np.float32) # 1 second
|
| 53 |
+
result = pipe(audio)
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### Batch Processing
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
# Process multiple files
|
| 60 |
+
files = ["audio1.wav", "audio2.wav", "audio3.wav"]
|
| 61 |
+
results = pipe(files, batch_size=4)
|
| 62 |
+
for r in results:
|
| 63 |
+
print(r["text"])
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
### Word-Level Timestamps
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
result = pipe("audio.wav", return_timestamps="word")
|
| 70 |
+
# Returns:
|
| 71 |
+
# {
|
| 72 |
+
# "text": "hello world",
|
| 73 |
+
# "chunks": [
|
| 74 |
+
# {"text": "hello", "timestamp": (0.0, 0.5)},
|
| 75 |
+
# {"text": "world", "timestamp": (0.6, 1.0)}
|
| 76 |
+
# ]
|
| 77 |
+
# }
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Streaming Inference
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from tiny_audio import ASRModel, ASRProcessor
|
| 84 |
+
import torch
|
| 85 |
+
|
| 86 |
+
model = ASRModel.from_pretrained("mazesmazes/tiny-audio")
|
| 87 |
+
processor = ASRProcessor.from_pretrained("mazesmazes/tiny-audio")
|
| 88 |
+
|
| 89 |
+
# Load and process audio
|
| 90 |
+
import librosa
|
| 91 |
+
audio, sr = librosa.load("audio.wav", sr=16000)
|
| 92 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
|
| 93 |
+
|
| 94 |
+
# Stream tokens
|
| 95 |
+
for token in model.generate_streaming(inputs["input_features"]):
|
| 96 |
+
print(token, end="", flush=True)
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
### Using with torch directly
|
| 100 |
+
|
| 101 |
+
```python
|
| 102 |
+
from tiny_audio import ASRModel, ASRProcessor
|
| 103 |
+
import torch
|
| 104 |
+
import librosa
|
| 105 |
+
|
| 106 |
+
# Load model and processor
|
| 107 |
+
model = ASRModel.from_pretrained("mazesmazes/tiny-audio")
|
| 108 |
+
processor = ASRProcessor.from_pretrained("mazesmazes/tiny-audio")
|
| 109 |
+
|
| 110 |
+
# Load audio (16kHz)
|
| 111 |
+
audio, sr = librosa.load("audio.wav", sr=16000)
|
| 112 |
+
|
| 113 |
+
# Process
|
| 114 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
|
| 115 |
+
|
| 116 |
+
# Generate
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
output = model.generate(
|
| 119 |
+
input_features=inputs["input_features"],
|
| 120 |
+
attention_mask=inputs["attention_mask"],
|
| 121 |
+
max_new_tokens=256
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# Decode
|
| 125 |
+
text = processor.batch_decode(output, skip_special_tokens=True)[0]
|
| 126 |
+
print(text)
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### GPU Inference
|
| 130 |
+
|
| 131 |
+
```python
|
| 132 |
+
import torch
|
| 133 |
+
|
| 134 |
+
pipe = pipeline(
|
| 135 |
+
"automatic-speech-recognition",
|
| 136 |
+
model="mazesmazes/tiny-audio",
|
| 137 |
+
trust_remote_code=True,
|
| 138 |
+
device="cuda" # or device=0
|
| 139 |
+
)
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
### Half Precision
|
| 143 |
+
|
| 144 |
+
```python
|
| 145 |
+
pipe = pipeline(
|
| 146 |
+
"automatic-speech-recognition",
|
| 147 |
+
model="mazesmazes/tiny-audio",
|
| 148 |
+
trust_remote_code=True,
|
| 149 |
+
torch_dtype=torch.float16,
|
| 150 |
+
device="cuda"
|
| 151 |
+
)
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## Architecture
|
| 155 |
+
|
| 156 |
+
```
|
| 157 |
+
Audio (16kHz) → GLM-ASR Encoder (frozen) → MLP Projector (trained) → Qwen3 (frozen) → Text
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
Only the projector is trained (~12M params). The encoder and decoder remain frozen, leveraging their pretrained knowledge.
|
| 161 |
+
|
| 162 |
+
| Component | Model | Parameters | Status |
|
| 163 |
+
|-----------|-------|------------|--------|
|
| 164 |
+
| Audio Encoder | GLM-ASR-Nano-2512 | ~600M | Frozen |
|
| 165 |
+
| Projector | 2-layer MLP | ~12M | Trained |
|
| 166 |
+
| Language Model | Qwen3-0.6B | ~600M | Frozen |
|
| 167 |
+
|
| 168 |
+
### How It Works
|
| 169 |
+
|
| 170 |
+
1. **Audio Encoder**: GLM-ASR converts 16kHz audio into frame-level embeddings (768-dim)
|
| 171 |
+
2. **Projector**: A 2-layer MLP with frame stacking bridges the audio and text embedding spaces
|
| 172 |
+
3. **Language Model**: Qwen3 generates text autoregressively, conditioned on the projected audio
|
| 173 |
+
|
| 174 |
+
The projector reduces sequence length via frame stacking: `output_len = (input_len - 5) // 5 + 1`
|
| 175 |
+
|
| 176 |
+
## Model Specifications
|
| 177 |
+
|
| 178 |
+
| Specification | Value |
|
| 179 |
+
|---------------|-------|
|
| 180 |
+
| Input | Audio (16kHz mono) |
|
| 181 |
+
| Output | Text transcription |
|
| 182 |
+
| Max Audio Length | ~30 seconds (limited by encoder) |
|
| 183 |
+
| Vocabulary | Qwen3 tokenizer |
|
| 184 |
+
| Languages | English only |
|
| 185 |
+
| Generation | Greedy decoding (num_beams=1, do_sample=False) |
|
| 186 |
+
|
| 187 |
+
## Training Details
|
| 188 |
+
|
| 189 |
+
| | |
|
| 190 |
+
|---|---|
|
| 191 |
+
| **Dataset** | LoquaciousSet (25,000 hours) |
|
| 192 |
+
| **Hardware** | Single NVIDIA A40 |
|
| 193 |
+
| **Time** | ~24 hours |
|
| 194 |
+
| **Cost** | ~$12 |
|
| 195 |
+
| **Optimizer** | AdamW |
|
| 196 |
+
| **Learning Rate** | 1e-4 |
|
| 197 |
+
| **Batch Size** | 4 |
|
| 198 |
+
| **Steps** | 50,000 |
|
| 199 |
+
|
| 200 |
+
## Limitations
|
| 201 |
+
|
| 202 |
+
- **English only**: Not trained on other languages
|
| 203 |
+
- **Sample rate**: Expects 16kHz audio (other rates resampled automatically)
|
| 204 |
+
- **Audio length**: Best for clips under 30 seconds
|
| 205 |
+
- **Accuracy**: May degrade on:
|
| 206 |
+
- Heavily accented speech
|
| 207 |
+
- Noisy or low-quality audio
|
| 208 |
+
- Domain-specific terminology
|
| 209 |
+
- Overlapping speakers
|
| 210 |
+
- **No punctuation**: Output is lowercase without punctuation by default
|
| 211 |
+
|
| 212 |
+
## Requirements
|
| 213 |
+
|
| 214 |
+
```
|
| 215 |
+
transformers>=4.40.0
|
| 216 |
+
torch>=2.0.0
|
| 217 |
+
torchaudio>=2.0.0
|
| 218 |
+
```
|
| 219 |
+
|
| 220 |
+
Optional for streaming:
|
| 221 |
+
```
|
| 222 |
+
librosa
|
| 223 |
+
soundfile
|
| 224 |
+
```
|
| 225 |
+
|
| 226 |
+
## Files
|
| 227 |
+
|
| 228 |
+
| File | Description |
|
| 229 |
+
|------|-------------|
|
| 230 |
+
| `config.json` | Model configuration |
|
| 231 |
+
| `model.safetensors` | Projector weights (~48MB) |
|
| 232 |
+
| `preprocessor_config.json` | Audio preprocessing config |
|
| 233 |
+
| `tokenizer.json` | Tokenizer |
|
| 234 |
+
| `tokenizer_config.json` | Tokenizer config |
|
| 235 |
+
| `special_tokens_map.json` | Special tokens |
|
| 236 |
+
|
| 237 |
+
Note: Only the projector weights are stored. The encoder (GLM-ASR) and decoder (Qwen3) are loaded from their respective HuggingFace repos.
|
| 238 |
+
|
| 239 |
+
## Citation
|
| 240 |
+
|
| 241 |
+
If you use this model, please cite:
|
| 242 |
+
|
| 243 |
+
```bibtex
|
| 244 |
+
@misc{tinyaudio2024,
|
| 245 |
+
author = {Alex Kroman},
|
| 246 |
+
title = {Tiny Audio: Minimal ASR Training},
|
| 247 |
+
year = {2024},
|
| 248 |
+
publisher = {GitHub},
|
| 249 |
+
url = {https://github.com/alexkroman/tiny-audio}
|
| 250 |
+
}
|
| 251 |
+
```
|
| 252 |
+
|
| 253 |
+
## Links
|
| 254 |
+
|
| 255 |
+
- [GitHub Repository](https://github.com/alexkroman/tiny-audio) - Train your own model
|
| 256 |
+
- [Free 3.5-hour Course](https://github.com/alexkroman/tiny-audio/blob/main/docs/course/0-course-overview.md) - Learn ASR from scratch
|
| 257 |
+
- [Live Demo](https://huggingface.co/spaces/mazesmazes/tiny-audio) - Try it in your browser
|
| 258 |
+
|
| 259 |
+
## Acknowledgments
|
| 260 |
+
|
| 261 |
+
- [GLM-ASR](https://huggingface.co/zai-org/GLM-ASR-Nano-2512) for the audio encoder
|
| 262 |
+
- [Qwen3](https://huggingface.co/Qwen/Qwen3-0.6B) for the language model
|
| 263 |
+
- [LoquaciousSet](https://huggingface.co/datasets/speechbrain/LoquaciousSet) for training data
|
| 264 |
+
|
| 265 |
+
## License
|
| 266 |
+
|
| 267 |
+
MIT
|
asr_pipeline.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
"""ASR pipeline for audio-to-text transcription with optional timestamps and diarization."""
|
| 2 |
|
| 3 |
import re
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import Any
|
| 6 |
|
|
@@ -23,8 +24,135 @@ def _get_device() -> str:
|
|
| 23 |
return "cpu"
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
class ForcedAligner:
|
| 27 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
_bundle = None
|
| 30 |
_model = None
|
|
@@ -44,7 +172,8 @@ class ForcedAligner:
|
|
| 44 |
if cls._model is None:
|
| 45 |
import torchaudio
|
| 46 |
|
| 47 |
-
|
|
|
|
| 48 |
cls._model = cls._bundle.get_model().to(device)
|
| 49 |
cls._model.eval()
|
| 50 |
cls._labels = cls._bundle.get_labels()
|
|
@@ -57,28 +186,29 @@ class ForcedAligner:
|
|
| 57 |
audio: np.ndarray,
|
| 58 |
text: str,
|
| 59 |
sample_rate: int = 16000,
|
| 60 |
-
_language: str = "
|
| 61 |
_batch_size: int = 16,
|
| 62 |
) -> list[dict]:
|
| 63 |
"""Align transcript to audio and return word-level timestamps.
|
| 64 |
|
|
|
|
|
|
|
| 65 |
Args:
|
| 66 |
audio: Audio waveform as numpy array
|
| 67 |
text: Transcript text to align
|
| 68 |
sample_rate: Audio sample rate (default 16000)
|
| 69 |
-
_language:
|
| 70 |
-
_batch_size: Batch size
|
| 71 |
|
| 72 |
Returns:
|
| 73 |
List of dicts with 'word', 'start', 'end' keys
|
| 74 |
"""
|
| 75 |
import torchaudio
|
| 76 |
-
from torchaudio.functional import forced_align, merge_tokens
|
| 77 |
|
| 78 |
device = _get_device()
|
| 79 |
model, labels, dictionary = cls.get_instance(device)
|
| 80 |
|
| 81 |
-
# Convert audio to tensor
|
| 82 |
if isinstance(audio, np.ndarray):
|
| 83 |
waveform = torch.from_numpy(audio.copy()).float()
|
| 84 |
else:
|
|
@@ -88,7 +218,7 @@ class ForcedAligner:
|
|
| 88 |
if waveform.dim() == 1:
|
| 89 |
waveform = waveform.unsqueeze(0)
|
| 90 |
|
| 91 |
-
# Resample if needed
|
| 92 |
if sample_rate != cls._bundle.sample_rate:
|
| 93 |
waveform = torchaudio.functional.resample(
|
| 94 |
waveform, sample_rate, cls._bundle.sample_rate
|
|
@@ -103,67 +233,47 @@ class ForcedAligner:
|
|
| 103 |
|
| 104 |
emission = emissions[0].cpu()
|
| 105 |
|
| 106 |
-
# Normalize text
|
| 107 |
transcript = text.upper()
|
| 108 |
-
# Build tokens from transcript
|
| 109 |
tokens = []
|
|
|
|
|
|
|
| 110 |
for char in transcript:
|
| 111 |
if char in dictionary:
|
| 112 |
tokens.append(dictionary[char])
|
|
|
|
| 113 |
elif char == " ":
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
|
| 116 |
if not tokens:
|
| 117 |
return []
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
# Note: forced_align is deprecated in torchaudio 2.6+ and will be removed in 2.9 (late 2025)
|
| 123 |
-
# No official replacement announced yet. See https://github.com/pytorch/audio/issues/3902
|
| 124 |
-
aligned_tokens, scores = forced_align(emission.unsqueeze(0), targets, blank=0)
|
| 125 |
|
| 126 |
-
#
|
| 127 |
-
|
|
|
|
| 128 |
|
| 129 |
-
# Convert frame indices to time
|
| 130 |
-
frame_duration = 320 / cls._bundle.sample_rate
|
| 131 |
|
| 132 |
-
#
|
| 133 |
words = text.split()
|
| 134 |
word_timestamps = []
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
"word": words[word_idx],
|
| 146 |
-
"start": current_word_start * frame_duration,
|
| 147 |
-
"end": current_word_end * frame_duration,
|
| 148 |
-
}
|
| 149 |
-
)
|
| 150 |
-
word_idx += 1
|
| 151 |
-
current_word_start = None
|
| 152 |
-
current_word_end = None
|
| 153 |
-
else:
|
| 154 |
-
if current_word_start is None:
|
| 155 |
-
current_word_start = span.start
|
| 156 |
-
current_word_end = span.end
|
| 157 |
-
|
| 158 |
-
# Don't forget the last word
|
| 159 |
-
if current_word_start is not None and word_idx < len(words):
|
| 160 |
-
word_timestamps.append(
|
| 161 |
-
{
|
| 162 |
-
"word": words[word_idx],
|
| 163 |
-
"start": current_word_start * frame_duration,
|
| 164 |
-
"end": current_word_end * frame_duration,
|
| 165 |
-
}
|
| 166 |
-
)
|
| 167 |
|
| 168 |
return word_timestamps
|
| 169 |
|
|
|
|
| 1 |
"""ASR pipeline for audio-to-text transcription with optional timestamps and diarization."""
|
| 2 |
|
| 3 |
import re
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import Any
|
| 7 |
|
|
|
|
| 24 |
return "cpu"
|
| 25 |
|
| 26 |
|
| 27 |
+
@dataclass
|
| 28 |
+
class _AlignPoint:
|
| 29 |
+
"""A point in the alignment path."""
|
| 30 |
+
|
| 31 |
+
token_index: int
|
| 32 |
+
time_index: int
|
| 33 |
+
score: float
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class _AlignSegment:
|
| 38 |
+
"""An aligned character/word segment."""
|
| 39 |
+
|
| 40 |
+
label: str
|
| 41 |
+
start: int
|
| 42 |
+
end: int
|
| 43 |
+
score: float
|
| 44 |
+
|
| 45 |
+
@property
|
| 46 |
+
def length(self):
|
| 47 |
+
return self.end - self.start
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def _get_trellis(emission: torch.Tensor, tokens: list[int], blank_id: int = 0) -> torch.Tensor:
|
| 51 |
+
"""Build dynamic programming trellis for CTC alignment.
|
| 52 |
+
|
| 53 |
+
Based on WhisperX's alignment algorithm for improved accuracy.
|
| 54 |
+
"""
|
| 55 |
+
num_frame = emission.size(0)
|
| 56 |
+
num_tokens = len(tokens)
|
| 57 |
+
|
| 58 |
+
trellis = torch.zeros((num_frame, num_tokens))
|
| 59 |
+
trellis[1:, 0] = torch.cumsum(emission[1:, blank_id], 0)
|
| 60 |
+
trellis[0, 1:] = -float("inf")
|
| 61 |
+
trellis[-num_tokens + 1 :, 0] = float("inf")
|
| 62 |
+
|
| 63 |
+
for t in range(num_frame - 1):
|
| 64 |
+
trellis[t + 1, 1:] = torch.maximum(
|
| 65 |
+
# Score for staying at the same token
|
| 66 |
+
trellis[t, 1:] + emission[t, blank_id],
|
| 67 |
+
# Score for changing to the next token
|
| 68 |
+
trellis[t, :-1] + emission[t, tokens[1:]],
|
| 69 |
+
)
|
| 70 |
+
return trellis
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def _backtrack(
|
| 74 |
+
trellis: torch.Tensor,
|
| 75 |
+
emission: torch.Tensor,
|
| 76 |
+
tokens: list[int],
|
| 77 |
+
blank_id: int = 0,
|
| 78 |
+
) -> list[_AlignPoint]:
|
| 79 |
+
"""Backtrack through trellis to find optimal alignment path."""
|
| 80 |
+
t, j = trellis.size(0) - 1, trellis.size(1) - 1
|
| 81 |
+
|
| 82 |
+
path = [_AlignPoint(j, t, emission[t, blank_id].exp().item())]
|
| 83 |
+
while j > 0:
|
| 84 |
+
assert t > 0
|
| 85 |
+
|
| 86 |
+
p_stay = emission[t - 1, blank_id]
|
| 87 |
+
p_change = emission[t - 1, tokens[j]]
|
| 88 |
+
|
| 89 |
+
stayed = trellis[t - 1, j] + p_stay
|
| 90 |
+
changed = trellis[t - 1, j - 1] + p_change
|
| 91 |
+
|
| 92 |
+
t -= 1
|
| 93 |
+
if changed > stayed:
|
| 94 |
+
j -= 1
|
| 95 |
+
|
| 96 |
+
prob = (p_change if changed > stayed else p_stay).exp().item()
|
| 97 |
+
path.append(_AlignPoint(j, t, prob))
|
| 98 |
+
|
| 99 |
+
while t > 0:
|
| 100 |
+
prob = emission[t - 1, blank_id].exp().item()
|
| 101 |
+
path.append(_AlignPoint(j, t - 1, prob))
|
| 102 |
+
t -= 1
|
| 103 |
+
|
| 104 |
+
return path[::-1]
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _merge_repeats(path: list[_AlignPoint], transcript: str) -> list[_AlignSegment]:
|
| 108 |
+
"""Merge repeated tokens into character segments."""
|
| 109 |
+
i1, i2 = 0, 0
|
| 110 |
+
segments = []
|
| 111 |
+
while i1 < len(path):
|
| 112 |
+
while i2 < len(path) and path[i1].token_index == path[i2].token_index:
|
| 113 |
+
i2 += 1
|
| 114 |
+
score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
|
| 115 |
+
segments.append(
|
| 116 |
+
_AlignSegment(
|
| 117 |
+
transcript[path[i1].token_index],
|
| 118 |
+
path[i1].time_index,
|
| 119 |
+
path[i2 - 1].time_index + 1,
|
| 120 |
+
score,
|
| 121 |
+
)
|
| 122 |
+
)
|
| 123 |
+
i1 = i2
|
| 124 |
+
return segments
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def _merge_words(segments: list[_AlignSegment], separator: str = "|") -> list[_AlignSegment]:
|
| 128 |
+
"""Merge character segments into word segments."""
|
| 129 |
+
words = []
|
| 130 |
+
i1, i2 = 0, 0
|
| 131 |
+
while i1 < len(segments):
|
| 132 |
+
if i2 >= len(segments) or segments[i2].label == separator:
|
| 133 |
+
if i1 != i2:
|
| 134 |
+
segs = segments[i1:i2]
|
| 135 |
+
word = "".join([seg.label for seg in segs])
|
| 136 |
+
total_length = sum(seg.length for seg in segs)
|
| 137 |
+
score = (
|
| 138 |
+
sum(seg.score * seg.length for seg in segs) / total_length
|
| 139 |
+
if total_length > 0
|
| 140 |
+
else 0
|
| 141 |
+
)
|
| 142 |
+
words.append(_AlignSegment(word, segments[i1].start, segments[i2 - 1].end, score))
|
| 143 |
+
i1 = i2 + 1
|
| 144 |
+
i2 = i1
|
| 145 |
+
else:
|
| 146 |
+
i2 += 1
|
| 147 |
+
return words
|
| 148 |
+
|
| 149 |
+
|
| 150 |
class ForcedAligner:
|
| 151 |
+
"""Forced aligner for word-level timestamps using wav2vec2.
|
| 152 |
+
|
| 153 |
+
Uses WhisperX-style dynamic programming alignment for improved accuracy
|
| 154 |
+
over simple CTC greedy alignment.
|
| 155 |
+
"""
|
| 156 |
|
| 157 |
_bundle = None
|
| 158 |
_model = None
|
|
|
|
| 172 |
if cls._model is None:
|
| 173 |
import torchaudio
|
| 174 |
|
| 175 |
+
# Use LARGE model for better accuracy (same as WhisperX recommendation)
|
| 176 |
+
cls._bundle = torchaudio.pipelines.WAV2VEC2_ASR_LARGE_960H
|
| 177 |
cls._model = cls._bundle.get_model().to(device)
|
| 178 |
cls._model.eval()
|
| 179 |
cls._labels = cls._bundle.get_labels()
|
|
|
|
| 186 |
audio: np.ndarray,
|
| 187 |
text: str,
|
| 188 |
sample_rate: int = 16000,
|
| 189 |
+
_language: str = "en",
|
| 190 |
_batch_size: int = 16,
|
| 191 |
) -> list[dict]:
|
| 192 |
"""Align transcript to audio and return word-level timestamps.
|
| 193 |
|
| 194 |
+
Uses WhisperX-style dynamic programming for improved alignment accuracy.
|
| 195 |
+
|
| 196 |
Args:
|
| 197 |
audio: Audio waveform as numpy array
|
| 198 |
text: Transcript text to align
|
| 199 |
sample_rate: Audio sample rate (default 16000)
|
| 200 |
+
_language: Language code (unused, English only)
|
| 201 |
+
_batch_size: Batch size (unused)
|
| 202 |
|
| 203 |
Returns:
|
| 204 |
List of dicts with 'word', 'start', 'end' keys
|
| 205 |
"""
|
| 206 |
import torchaudio
|
|
|
|
| 207 |
|
| 208 |
device = _get_device()
|
| 209 |
model, labels, dictionary = cls.get_instance(device)
|
| 210 |
|
| 211 |
+
# Convert audio to tensor
|
| 212 |
if isinstance(audio, np.ndarray):
|
| 213 |
waveform = torch.from_numpy(audio.copy()).float()
|
| 214 |
else:
|
|
|
|
| 218 |
if waveform.dim() == 1:
|
| 219 |
waveform = waveform.unsqueeze(0)
|
| 220 |
|
| 221 |
+
# Resample if needed
|
| 222 |
if sample_rate != cls._bundle.sample_rate:
|
| 223 |
waveform = torchaudio.functional.resample(
|
| 224 |
waveform, sample_rate, cls._bundle.sample_rate
|
|
|
|
| 233 |
|
| 234 |
emission = emissions[0].cpu()
|
| 235 |
|
| 236 |
+
# Normalize text and build token sequence
|
| 237 |
transcript = text.upper()
|
|
|
|
| 238 |
tokens = []
|
| 239 |
+
clean_transcript = ""
|
| 240 |
+
|
| 241 |
for char in transcript:
|
| 242 |
if char in dictionary:
|
| 243 |
tokens.append(dictionary[char])
|
| 244 |
+
clean_transcript += char
|
| 245 |
elif char == " ":
|
| 246 |
+
sep_token = dictionary.get("|", dictionary.get(" ", 0))
|
| 247 |
+
tokens.append(sep_token)
|
| 248 |
+
clean_transcript += "|"
|
| 249 |
|
| 250 |
if not tokens:
|
| 251 |
return []
|
| 252 |
|
| 253 |
+
# Build trellis and find optimal path (WhisperX-style DP alignment)
|
| 254 |
+
trellis = _get_trellis(emission, tokens, blank_id=0)
|
| 255 |
+
path = _backtrack(trellis, emission, tokens, blank_id=0)
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
+
# Merge into character segments, then word segments
|
| 258 |
+
char_segments = _merge_repeats(path, clean_transcript)
|
| 259 |
+
word_segments = _merge_words(char_segments, separator="|")
|
| 260 |
|
| 261 |
+
# Convert frame indices to time
|
| 262 |
+
frame_duration = 320 / cls._bundle.sample_rate # 20ms per frame
|
| 263 |
|
| 264 |
+
# Build output with original words
|
| 265 |
words = text.split()
|
| 266 |
word_timestamps = []
|
| 267 |
+
|
| 268 |
+
for i, seg in enumerate(word_segments):
|
| 269 |
+
if i < len(words):
|
| 270 |
+
word_timestamps.append(
|
| 271 |
+
{
|
| 272 |
+
"word": words[i],
|
| 273 |
+
"start": seg.start * frame_duration,
|
| 274 |
+
"end": seg.end * frame_duration,
|
| 275 |
+
}
|
| 276 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
return word_timestamps
|
| 279 |
|