new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

MVHumanNet++: A Large-scale Dataset of Multi-view Daily Dressing Human Captures with Richer Annotations for 3D Human Digitization

In this era, the success of large language models and text-to-image models can be attributed to the driving force of large-scale datasets. However, in the realm of 3D vision, while significant progress has been achieved in object-centric tasks through large-scale datasets like Objaverse and MVImgNet, human-centric tasks have seen limited advancement, largely due to the absence of a comparable large-scale human dataset. To bridge this gap, we present MVHumanNet++, a dataset that comprises multi-view human action sequences of 4,500 human identities. The primary focus of our work is on collecting human data that features a large number of diverse identities and everyday clothing using multi-view human capture systems, which facilitates easily scalable data collection. Our dataset contains 9,000 daily outfits, 60,000 motion sequences and 645 million frames with extensive annotations, including human masks, camera parameters, 2D and 3D keypoints, SMPL/SMPLX parameters, and corresponding textual descriptions. Additionally, the proposed MVHumanNet++ dataset is enhanced with newly processed normal maps and depth maps, significantly expanding its applicability and utility for advanced human-centric research. To explore the potential of our proposed MVHumanNet++ dataset in various 2D and 3D visual tasks, we conducted several pilot studies to demonstrate the performance improvements and effective applications enabled by the scale provided by MVHumanNet++. As the current largest-scale 3D human dataset, we hope that the release of MVHumanNet++ dataset with annotations will foster further innovations in the domain of 3D human-centric tasks at scale. MVHumanNet++ is publicly available at https://kevinlee09.github.io/research/MVHumanNet++/.

  • 8 authors
·
May 3, 2025

FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset

The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.

  • 2 authors
·
Apr 19, 2024

How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection

The introduction of ChatGPT has garnered widespread attention in both academic and industrial communities. ChatGPT is able to respond effectively to a wide range of human questions, providing fluent and comprehensive answers that significantly surpass previous public chatbots in terms of security and usefulness. On one hand, people are curious about how ChatGPT is able to achieve such strength and how far it is from human experts. On the other hand, people are starting to worry about the potential negative impacts that large language models (LLMs) like ChatGPT could have on society, such as fake news, plagiarism, and social security issues. In this work, we collected tens of thousands of comparison responses from both human experts and ChatGPT, with questions ranging from open-domain, financial, medical, legal, and psychological areas. We call the collected dataset the Human ChatGPT Comparison Corpus (HC3). Based on the HC3 dataset, we study the characteristics of ChatGPT's responses, the differences and gaps from human experts, and future directions for LLMs. We conducted comprehensive human evaluations and linguistic analyses of ChatGPT-generated content compared with that of humans, where many interesting results are revealed. After that, we conduct extensive experiments on how to effectively detect whether a certain text is generated by ChatGPT or humans. We build three different detection systems, explore several key factors that influence their effectiveness, and evaluate them in different scenarios. The dataset, code, and models are all publicly available at https://github.com/Hello-SimpleAI/chatgpt-comparison-detection.

  • 8 authors
·
Jan 18, 2023

ParaHome: Parameterizing Everyday Home Activities Towards 3D Generative Modeling of Human-Object Interactions

To enable machines to learn how humans interact with the physical world in our daily activities, it is crucial to provide rich data that encompasses the 3D motion of humans as well as the motion of objects in a learnable 3D representation. Ideally, this data should be collected in a natural setup, capturing the authentic dynamic 3D signals during human-object interactions. To address this challenge, we introduce the ParaHome system, designed to capture and parameterize dynamic 3D movements of humans and objects within a common home environment. Our system consists of a multi-view setup with 70 synchronized RGB cameras, as well as wearable motion capture devices equipped with an IMU-based body suit and hand motion capture gloves. By leveraging the ParaHome system, we collect a novel large-scale dataset of human-object interaction. Notably, our dataset offers key advancement over existing datasets in three main aspects: (1) capturing 3D body and dexterous hand manipulation motion alongside 3D object movement within a contextual home environment during natural activities; (2) encompassing human interaction with multiple objects in various episodic scenarios with corresponding descriptions in texts; (3) including articulated objects with multiple parts expressed with parameterized articulations. Building upon our dataset, we introduce new research tasks aimed at building a generative model for learning and synthesizing human-object interactions in a real-world room setting.

  • 4 authors
·
Jan 18, 2024

FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset

Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B schuhmann2022laion, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.

  • 11 authors
·
Mar 10, 2025

DNA-Rendering: A Diverse Neural Actor Repository for High-Fidelity Human-centric Rendering

Realistic human-centric rendering plays a key role in both computer vision and computer graphics. Rapid progress has been made in the algorithm aspect over the years, yet existing human-centric rendering datasets and benchmarks are rather impoverished in terms of diversity, which are crucial for rendering effect. Researchers are usually constrained to explore and evaluate a small set of rendering problems on current datasets, while real-world applications require methods to be robust across different scenarios. In this work, we present DNA-Rendering, a large-scale, high-fidelity repository of human performance data for neural actor rendering. DNA-Rendering presents several alluring attributes. First, our dataset contains over 1500 human subjects, 5000 motion sequences, and 67.5M frames' data volume. Second, we provide rich assets for each subject -- 2D/3D human body keypoints, foreground masks, SMPLX models, cloth/accessory materials, multi-view images, and videos. These assets boost the current method's accuracy on downstream rendering tasks. Third, we construct a professional multi-view system to capture data, which contains 60 synchronous cameras with max 4096 x 3000 resolution, 15 fps speed, and stern camera calibration steps, ensuring high-quality resources for task training and evaluation. Along with the dataset, we provide a large-scale and quantitative benchmark in full-scale, with multiple tasks to evaluate the existing progress of novel view synthesis, novel pose animation synthesis, and novel identity rendering methods. In this manuscript, we describe our DNA-Rendering effort as a revealing of new observations, challenges, and future directions to human-centric rendering. The dataset, code, and benchmarks will be publicly available at https://dna-rendering.github.io/

  • 21 authors
·
Jul 19, 2023

MVHumanNet: A Large-scale Dataset of Multi-view Daily Dressing Human Captures

In this era, the success of large language models and text-to-image models can be attributed to the driving force of large-scale datasets. However, in the realm of 3D vision, while remarkable progress has been made with models trained on large-scale synthetic and real-captured object data like Objaverse and MVImgNet, a similar level of progress has not been observed in the domain of human-centric tasks partially due to the lack of a large-scale human dataset. Existing datasets of high-fidelity 3D human capture continue to be mid-sized due to the significant challenges in acquiring large-scale high-quality 3D human data. To bridge this gap, we present MVHumanNet, a dataset that comprises multi-view human action sequences of 4,500 human identities. The primary focus of our work is on collecting human data that features a large number of diverse identities and everyday clothing using a multi-view human capture system, which facilitates easily scalable data collection. Our dataset contains 9,000 daily outfits, 60,000 motion sequences and 645 million frames with extensive annotations, including human masks, camera parameters, 2D and 3D keypoints, SMPL/SMPLX parameters, and corresponding textual descriptions. To explore the potential of MVHumanNet in various 2D and 3D visual tasks, we conducted pilot studies on view-consistent action recognition, human NeRF reconstruction, text-driven view-unconstrained human image generation, as well as 2D view-unconstrained human image and 3D avatar generation. Extensive experiments demonstrate the performance improvements and effective applications enabled by the scale provided by MVHumanNet. As the current largest-scale 3D human dataset, we hope that the release of MVHumanNet data with annotations will foster further innovations in the domain of 3D human-centric tasks at scale.

  • 12 authors
·
Dec 5, 2023

Datasheets Aren't Enough: DataRubrics for Automated Quality Metrics and Accountability

High-quality datasets are fundamental to training and evaluating machine learning models, yet their creation-especially with accurate human annotations-remains a significant challenge. Many dataset paper submissions lack originality, diversity, or rigorous quality control, and these shortcomings are often overlooked during peer review. Submissions also frequently omit essential details about dataset construction and properties. While existing tools such as datasheets aim to promote transparency, they are largely descriptive and do not provide standardized, measurable methods for evaluating data quality. Similarly, metadata requirements at conferences promote accountability but are inconsistently enforced. To address these limitations, this position paper advocates for the integration of systematic, rubric-based evaluation metrics into the dataset review process-particularly as submission volumes continue to grow. We also explore scalable, cost-effective methods for synthetic data generation, including dedicated tools and LLM-as-a-judge approaches, to support more efficient evaluation. As a call to action, we introduce DataRubrics, a structured framework for assessing the quality of both human- and model-generated datasets. Leveraging recent advances in LLM-based evaluation, DataRubrics offers a reproducible, scalable, and actionable solution for dataset quality assessment, enabling both authors and reviewers to uphold higher standards in data-centric research. We also release code to support reproducibility of LLM-based evaluations at https://github.com/datarubrics/datarubrics.

  • 20 authors
·
Jun 2, 2025 2

Navigating Dataset Documentations in AI: A Large-Scale Analysis of Dataset Cards on Hugging Face

Advances in machine learning are closely tied to the creation of datasets. While data documentation is widely recognized as essential to the reliability, reproducibility, and transparency of ML, we lack a systematic empirical understanding of current dataset documentation practices. To shed light on this question, here we take Hugging Face -- one of the largest platforms for sharing and collaborating on ML models and datasets -- as a prominent case study. By analyzing all 7,433 dataset documentation on Hugging Face, our investigation provides an overview of the Hugging Face dataset ecosystem and insights into dataset documentation practices, yielding 5 main findings: (1) The dataset card completion rate shows marked heterogeneity correlated with dataset popularity. (2) A granular examination of each section within the dataset card reveals that the practitioners seem to prioritize Dataset Description and Dataset Structure sections, while the Considerations for Using the Data section receives the lowest proportion of content. (3) By analyzing the subsections within each section and utilizing topic modeling to identify key topics, we uncover what is discussed in each section, and underscore significant themes encompassing both technical and social impacts, as well as limitations within the Considerations for Using the Data section. (4) Our findings also highlight the need for improved accessibility and reproducibility of datasets in the Usage sections. (5) In addition, our human annotation evaluation emphasizes the pivotal role of comprehensive dataset content in shaping individuals' perceptions of a dataset card's overall quality. Overall, our study offers a unique perspective on analyzing dataset documentation through large-scale data science analysis and underlines the need for more thorough dataset documentation in machine learning research.

  • 3 authors
·
Jan 24, 2024

SpeakerVid-5M: A Large-Scale High-Quality Dataset for Audio-Visual Dyadic Interactive Human Generation

The rapid development of large-scale models has catalyzed significant breakthroughs in the digital human domain. These advanced methodologies offer high-fidelity solutions for avatar driving and rendering, leading academia to focus on the next major challenge: audio-visual dyadic interactive virtual human. To facilitate research in this emerging area, we present SpeakerVid-5M dataset, the first large-scale, high-quality dataset designed for audio-visual dyadic interactive virtual human generation. Totaling over 8,743 hours, SpeakerVid-5M contains more than 5.2 million video clips of human portraits. It covers diverse scales and interaction types, including monadic talking, listening, and dyadic conversations. Crucially, the dataset is structured along two key dimensions: interaction type and data quality. First, it is categorized into four types (dialogue branch, single branch, listening branch and multi-turn branch) based on the interaction scenario. Second, it is stratified into a large-scale pre-training subset and a curated, high-quality subset for Supervised Fine-Tuning (SFT). This dual structure accommodates a wide array of 2D virtual human tasks. In addition, we provide an autoregressive (AR)-based video chat baseline trained on this data, accompanied by a dedicated set of metrics and test data to serve as a benchmark VidChatBench for future work. Both the dataset and the corresponding data processing code will be publicly released. Project page: https://dorniwang.github.io/SpeakerVid-5M/

  • 9 authors
·
Jul 13, 2025 3

Exploring the Effectiveness of Instruction Tuning in Biomedical Language Processing

Large Language Models (LLMs), particularly those similar to ChatGPT, have significantly influenced the field of Natural Language Processing (NLP). While these models excel in general language tasks, their performance in domain-specific downstream tasks such as biomedical and clinical Named Entity Recognition (NER), Relation Extraction (RE), and Medical Natural Language Inference (NLI) is still evolving. In this context, our study investigates the potential of instruction tuning for biomedical language processing, applying this technique to two general LLMs of substantial scale. We present a comprehensive, instruction-based model trained on a dataset that consists of approximately 200,000 instruction-focused samples. This dataset represents a carefully curated compilation of existing data, meticulously adapted and reformatted to align with the specific requirements of our instruction-based tasks. This initiative represents an important step in utilising such models to achieve results on par with specialised encoder-only models like BioBERT and BioClinicalBERT for various classical biomedical NLP tasks. Our work includes an analysis of the dataset's composition and its impact on model performance, providing insights into the intricacies of instruction tuning. By sharing our codes, models, and the distinctively assembled instruction-based dataset, we seek to encourage ongoing research and development in this area.

  • 3 authors
·
Dec 31, 2023

MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension

The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.

  • 14 authors
·
Jul 5, 2024

HumanEdit: A High-Quality Human-Rewarded Dataset for Instruction-based Image Editing

We present HumanEdit, a high-quality, human-rewarded dataset specifically designed for instruction-guided image editing, enabling precise and diverse image manipulations through open-form language instructions. Previous large-scale editing datasets often incorporate minimal human feedback, leading to challenges in aligning datasets with human preferences. HumanEdit bridges this gap by employing human annotators to construct data pairs and administrators to provide feedback. With meticulously curation, HumanEdit comprises 5,751 images and requires more than 2,500 hours of human effort across four stages, ensuring both accuracy and reliability for a wide range of image editing tasks. The dataset includes six distinct types of editing instructions: Action, Add, Counting, Relation, Remove, and Replace, encompassing a broad spectrum of real-world scenarios. All images in the dataset are accompanied by masks, and for a subset of the data, we ensure that the instructions are sufficiently detailed to support mask-free editing. Furthermore, HumanEdit offers comprehensive diversity and high-resolution 1024 times 1024 content sourced from various domains, setting a new versatile benchmark for instructional image editing datasets. With the aim of advancing future research and establishing evaluation benchmarks in the field of image editing, we release HumanEdit at https://huggingface.co/datasets/BryanW/HumanEdit.

  • 7 authors
·
Dec 5, 2024 2

OpenHumanVid: A Large-Scale High-Quality Dataset for Enhancing Human-Centric Video Generation

Recent advancements in visual generation technologies have markedly increased the scale and availability of video datasets, which are crucial for training effective video generation models. However, a significant lack of high-quality, human-centric video datasets presents a challenge to progress in this field. To bridge this gap, we introduce OpenHumanVid, a large-scale and high-quality human-centric video dataset characterized by precise and detailed captions that encompass both human appearance and motion states, along with supplementary human motion conditions, including skeleton sequences and speech audio. To validate the efficacy of this dataset and the associated training strategies, we propose an extension of existing classical diffusion transformer architectures and conduct further pretraining of our models on the proposed dataset. Our findings yield two critical insights: First, the incorporation of a large-scale, high-quality dataset substantially enhances evaluation metrics for generated human videos while preserving performance in general video generation tasks. Second, the effective alignment of text with human appearance, human motion, and facial motion is essential for producing high-quality video outputs. Based on these insights and corresponding methodologies, the straightforward extended network trained on the proposed dataset demonstrates an obvious improvement in the generation of human-centric videos. Project page https://fudan-generative-vision.github.io/OpenHumanVid

  • 11 authors
·
Nov 28, 2024

Crowdsourcing Dermatology Images with Google Search Ads: Creating a Real-World Skin Condition Dataset

Background: Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education, and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods: We used Google Search advertisements to invite contributions to an open access dataset of images of dermatology conditions, demographic and symptom information. With informed contributor consent, we describe and release this dataset containing 10,408 images from 5,033 contributions from internet users in the United States over 8 months starting March 2023. The dataset includes dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and Monk Skin Tone (eMST) labels for the images. Results: We received a median of 22 submissions/day (IQR 14-30). Female (66.72%) and younger (52% < age 40) contributors had a higher representation in the dataset compared to the US population, and 32.6% of contributors reported a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Dermatologist confidence in assigning a differential diagnosis increased with the number of available variables, and showed a weaker correlation with image sharpness (Spearman's P values <0.001 and 0.01 respectively). Most contributions were short-duration (54% with onset < 7 days ago ) and 89% were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset. The dataset is available at github.com/google-research-datasets/scin . Conclusion: Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions.

  • 20 authors
·
Feb 28, 2024

EmotionTalk: An Interactive Chinese Multimodal Emotion Dataset With Rich Annotations

In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose EmotionTalk, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk.

  • 12 authors
·
May 28, 2025

Words are all you need? Language as an approximation for human similarity judgments

Human similarity judgments are a powerful supervision signal for machine learning applications based on techniques such as contrastive learning, information retrieval, and model alignment, but classical methods for collecting human similarity judgments are too expensive to be used at scale. Recent methods propose using pre-trained deep neural networks (DNNs) to approximate human similarity, but pre-trained DNNs may not be available for certain domains (e.g., medical images, low-resource languages) and their performance in approximating human similarity has not been extensively tested. We conducted an evaluation of 611 pre-trained models across three domains -- images, audio, video -- and found that there is a large gap in performance between human similarity judgments and pre-trained DNNs. To address this gap, we propose a new class of similarity approximation methods based on language. To collect the language data required by these new methods, we also developed and validated a novel adaptive tag collection pipeline. We find that our proposed language-based methods are significantly cheaper, in the number of human judgments, than classical methods, but still improve performance over the DNN-based methods. Finally, we also develop `stacked' methods that combine language embeddings with DNN embeddings, and find that these consistently provide the best approximations for human similarity across all three of our modalities. Based on the results of this comprehensive study, we provide a concise guide for researchers interested in collecting or approximating human similarity data. To accompany this guide, we also release all of the similarity and language data, a total of 206,339 human judgments, that we collected in our experiments, along with a detailed breakdown of all modeling results.

  • 7 authors
·
Jun 8, 2022

DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery

The rapid advancement of large language models has fundamentally shifted the bottleneck in AI development from computational power to data availability-with countless valuable datasets remaining hidden across specialized repositories, research appendices, and domain platforms. As reasoning capabilities and deep research methodologies continue to evolve, a critical question emerges: can AI agents transcend conventional search to systematically discover any dataset that meets specific user requirements, enabling truly autonomous demand-driven data curation? We introduce DatasetResearch, the first comprehensive benchmark evaluating AI agents' ability to discover and synthesize datasets from 208 real-world demands across knowledge-intensive and reasoning-intensive tasks. Our tri-dimensional evaluation framework reveals a stark reality: even advanced deep research systems achieve only 22% score on our challenging DatasetResearch-pro subset, exposing the vast gap between current capabilities and perfect dataset discovery. Our analysis uncovers a fundamental dichotomy-search agents excel at knowledge tasks through retrieval breadth, while synthesis agents dominate reasoning challenges via structured generation-yet both catastrophically fail on "corner cases" outside existing distributions. These findings establish the first rigorous baseline for dataset discovery agents and illuminate the path toward AI systems capable of finding any dataset in the digital universe. Our benchmark and comprehensive analysis provide the foundation for the next generation of self-improving AI systems and are publicly available at https://github.com/GAIR-NLP/DatasetResearch.

  • 7 authors
·
Aug 9, 2025

HUME: Measuring the Human-Model Performance Gap in Text Embedding Task

Comparing human and model performance offers a valuable perspective for understanding the strengths and limitations of embedding models, highlighting where they succeed and where they fail to capture meaning and nuance. However, such comparisons are rarely made, as human performance on embedding tasks is difficult to measure. To fill this gap, we introduce HUME: Human Evaluation Framework for Text Embeddings. While frameworks like MTEB provide broad model evaluation, they lack reliable estimates of human performance, limiting the interpretability of model scores. We measure human performance across 16 MTEB datasets spanning reranking, classification, clustering, and semantic textual similarity across linguistically diverse high- and low-resource languages. Humans achieve an average performance of 77.6% compared to 80.1% for the best embedding model, although variation is substantial: models reach near-ceiling performance on some datasets while struggling on others, suggesting dataset issues and revealing shortcomings in low-resource languages. We provide human performance baselines, insight into task difficulty patterns, and an extensible evaluation framework that enables a more meaningful interpretation of the model and informs the development of both models and benchmarks. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.

Datasets for Large Language Models: A Comprehensive Survey

This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.

  • 5 authors
·
Feb 27, 2024 1

MultiHuman-Testbench: Benchmarking Image Generation for Multiple Humans

Generation of images containing multiple humans, performing complex actions, while preserving their facial identities, is a significant challenge. A major factor contributing to this is the lack of a dedicated benchmark. To address this, we introduce MultiHuman-Testbench, a novel benchmark for rigorously evaluating generative models for multi-human generation. The benchmark comprises 1,800 samples, including carefully curated text prompts, describing a range of simple to complex human actions. These prompts are matched with a total of 5,550 unique human face images, sampled uniformly to ensure diversity across age, ethnic background, and gender. Alongside captions, we provide human-selected pose conditioning images which accurately match the prompt. We propose a multi-faceted evaluation suite employing four key metrics to quantify face count, ID similarity, prompt alignment, and action detection. We conduct a thorough evaluation of a diverse set of models, including zero-shot approaches and training-based methods, with and without regional priors. We also propose novel techniques to incorporate image and region isolation using human segmentation and Hungarian matching, significantly improving ID similarity. Our proposed benchmark and key findings provide valuable insights and a standardized tool for advancing research in multi-human image generation. The dataset and evaluation codes will be available at https://github.com/Qualcomm-AI-research/MultiHuman-Testbench.

  • 9 authors
·
Jun 25, 2025

Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations

Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) in order to answer correctly that "the person is riding a horse-drawn carriage". In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 100K images where each image has an average of 21 objects, 18 attributes, and 18 pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answers.

  • 12 authors
·
Feb 23, 2016

Playing for 3D Human Recovery

Image- and video-based 3D human recovery (i.e., pose and shape estimation) have achieved substantial progress. However, due to the prohibitive cost of motion capture, existing datasets are often limited in scale and diversity. In this work, we obtain massive human sequences by playing the video game with automatically annotated 3D ground truths. Specifically, we contribute GTA-Human, a large-scale 3D human dataset generated with the GTA-V game engine, featuring a highly diverse set of subjects, actions, and scenarios. More importantly, we study the use of game-playing data and obtain five major insights. First, game-playing data is surprisingly effective. A simple frame-based baseline trained on GTA-Human outperforms more sophisticated methods by a large margin. For video-based methods, GTA-Human is even on par with the in-domain training set. Second, we discover that synthetic data provides critical complements to the real data that is typically collected indoor. Our investigation into domain gap provides explanations for our data mixture strategies that are simple yet useful. Third, the scale of the dataset matters. The performance boost is closely related to the additional data available. A systematic study reveals the model sensitivity to data density from multiple key aspects. Fourth, the effectiveness of GTA-Human is also attributed to the rich collection of strong supervision labels (SMPL parameters), which are otherwise expensive to acquire in real datasets. Fifth, the benefits of synthetic data extend to larger models such as deeper convolutional neural networks (CNNs) and Transformers, for which a significant impact is also observed. We hope our work could pave the way for scaling up 3D human recovery to the real world. Homepage: https://caizhongang.github.io/projects/GTA-Human/

  • 10 authors
·
Oct 14, 2021

PoseScript: Linking 3D Human Poses and Natural Language

Natural language plays a critical role in many computer vision applications, such as image captioning, visual question answering, and cross-modal retrieval, to provide fine-grained semantic information. Unfortunately, while human pose is key to human understanding, current 3D human pose datasets lack detailed language descriptions. To address this issue, we have introduced the PoseScript dataset. This dataset pairs more than six thousand 3D human poses from AMASS with rich human-annotated descriptions of the body parts and their spatial relationships. Additionally, to increase the size of the dataset to a scale that is compatible with data-hungry learning algorithms, we have proposed an elaborate captioning process that generates automatic synthetic descriptions in natural language from given 3D keypoints. This process extracts low-level pose information, known as "posecodes", using a set of simple but generic rules on the 3D keypoints. These posecodes are then combined into higher level textual descriptions using syntactic rules. With automatic annotations, the amount of available data significantly scales up (100k), making it possible to effectively pretrain deep models for finetuning on human captions. To showcase the potential of annotated poses, we present three multi-modal learning tasks that utilize the PoseScript dataset. Firstly, we develop a pipeline that maps 3D poses and textual descriptions into a joint embedding space, allowing for cross-modal retrieval of relevant poses from large-scale datasets. Secondly, we establish a baseline for a text-conditioned model generating 3D poses. Thirdly, we present a learned process for generating pose descriptions. These applications demonstrate the versatility and usefulness of annotated poses in various tasks and pave the way for future research in the field.

  • 5 authors
·
Oct 21, 2022

LAION-5B: An open large-scale dataset for training next generation image-text models

Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection. Announcement page https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi-modal-datasets/

  • 16 authors
·
Oct 15, 2022

Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo

The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce 'RetChemQA,' a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&As for each type. The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group, among others. The dataset has been generated using OpenAI's GPT-4 Turbo, a cutting-edge model known for its exceptional language understanding and generation capabilities. In addition to the Q&A dataset, we also release a dataset of synthesis conditions extracted from the corpus of literature used in this study. The aim of RetChemQA is to provide a robust platform for the development and evaluation of advanced machine learning algorithms, particularly for the reticular chemistry community. The dataset is structured to reflect the complexities and nuances of real-world scientific discourse, thereby enabling nuanced performance assessments across a variety of tasks. The dataset is available at the following link: https://github.com/nakulrampal/RetChemQA

  • 14 authors
·
May 3, 2024

HumanVLM: Foundation for Human-Scene Vision-Language Model

Human-scene vision-language tasks are increasingly prevalent in diverse social applications, yet recent advancements predominantly rely on models specifically tailored to individual tasks. Emerging research indicates that large vision-language models (VLMs) can enhance performance across various downstream vision-language understanding tasks. However, general-domain models often underperform in specialized fields. This study introduces a domain-specific Large Vision-Language Model, Human-Scene Vision-Language Model (HumanVLM), designed to provide a foundation for human-scene Vision-Language tasks. Specifically, (1) we create a large-scale human-scene multimodal image-text dataset (HumanCaption-10M) sourced from the Internet to facilitate domain-specific alignment; (2) develop a captioning approach for human-centered images, capturing human faces, bodies, and backgrounds, and construct a high-quality Human-Scene image-text dataset (HumanCaptionHQ, about 311k pairs) that contain as much detailed information as possible about human; (3) Using HumanCaption-10M and HumanCaptionHQ, we train a HumanVLM. In the experiments, we then evaluate our HumanVLM across varous downstream tasks, where it demonstrates superior overall performance among multimodal models of comparable scale, particularly excelling in human-related tasks and significantly outperforming similar models, including Qwen2VL and ChatGPT-4o. HumanVLM, alongside the data introduced, will stimulate the research in human-around fields.

  • 5 authors
·
Nov 5, 2024

Can Large Language Models Replace Data Scientists in Clinical Research?

Data science plays a critical role in clinical research, but it requires professionals with expertise in coding and medical data analysis. Large language models (LLMs) have shown great potential in supporting medical tasks and performing well in general coding tests. However, these tests do not assess LLMs' ability to handle data science tasks in medicine, nor do they explore their practical utility in clinical research. To address this, we developed a dataset consisting of 293 real-world data science coding tasks, based on 39 published clinical studies, covering 128 tasks in Python and 165 tasks in R. This dataset simulates realistic clinical research scenarios using patient data. Our findings reveal that cutting-edge LLMs struggle to generate perfect solutions, frequently failing to follow input instructions, understand target data, and adhere to standard analysis practices. Consequently, LLMs are not yet ready to fully automate data science tasks. We benchmarked advanced adaptation methods and found two to be particularly effective: chain-of-thought prompting, which provides a step-by-step plan for data analysis, which led to a 60% improvement in code accuracy; and self-reflection, enabling LLMs to iteratively refine their code, yielding a 38% accuracy improvement. Building on these insights, we developed a platform that integrates LLMs into the data science workflow for medical professionals. In a user study with five medical doctors, we found that while LLMs cannot fully automate coding tasks, they significantly streamline the programming process. We found that 80% of their submitted code solutions were incorporated from LLM-generated code, with up to 96% reuse in some cases. Our analysis highlights the potential of LLMs, when integrated into expert workflows, to enhance data science efficiency in clinical research.

  • 5 authors
·
Oct 28, 2024

UFineBench: Towards Text-based Person Retrieval with Ultra-fine Granularity

Existing text-based person retrieval datasets often have relatively coarse-grained text annotations. This hinders the model to comprehend the fine-grained semantics of query texts in real scenarios. To address this problem, we contribute a new benchmark named UFineBench for text-based person retrieval with ultra-fine granularity. Firstly, we construct a new dataset named UFine6926. We collect a large number of person images and manually annotate each image with two detailed textual descriptions, averaging 80.8 words each. The average word count is three to four times that of the previous datasets. In addition of standard in-domain evaluation, we also propose a special evaluation paradigm more representative of real scenarios. It contains a new evaluation set with cross domains, cross textual granularity and cross textual styles, named UFine3C, and a new evaluation metric for accurately measuring retrieval ability, named mean Similarity Distribution (mSD). Moreover, we propose CFAM, a more efficient algorithm especially designed for text-based person retrieval with ultra fine-grained texts. It achieves fine granularity mining by adopting a shared cross-modal granularity decoder and hard negative match mechanism. With standard in-domain evaluation, CFAM establishes competitive performance across various datasets, especially on our ultra fine-grained UFine6926. Furthermore, by evaluating on UFine3C, we demonstrate that training on our UFine6926 significantly improves generalization to real scenarios compared with other coarse-grained datasets. The dataset and code will be made publicly available at https://github.com/Zplusdragon/UFineBench.

  • 8 authors
·
Dec 6, 2023

Introducing CALMED: Multimodal Annotated Dataset for Emotion Detection in Children with Autism

Automatic Emotion Detection (ED) aims to build systems to identify users' emotions automatically. This field has the potential to enhance HCI, creating an individualised experience for the user. However, ED systems tend to perform poorly on people with Autism Spectrum Disorder (ASD). Hence, the need to create ED systems tailored to how people with autism express emotions. Previous works have created ED systems tailored for children with ASD but did not share the resulting dataset. Sharing annotated datasets is essential to enable the development of more advanced computer models for ED within the research community. In this paper, we describe our experience establishing a process to create a multimodal annotated dataset featuring children with a level 1 diagnosis of autism. In addition, we introduce CALMED (Children, Autism, Multimodal, Emotion, Detection), the resulting multimodal emotion detection dataset featuring children with autism aged 8-12. CALMED includes audio and video features extracted from recording files of study sessions with participants, together with annotations provided by their parents into four target classes. The generated dataset includes a total of 57,012 examples, with each example representing a time window of 200ms (0.2s). Our experience and methods described here, together with the dataset shared, aim to contribute to future research applications of affective computing in ASD, which has the potential to create systems to improve the lives of people with ASD.

  • 5 authors
·
Jul 24, 2023

fMRI-3D: A Comprehensive Dataset for Enhancing fMRI-based 3D Reconstruction

Reconstructing 3D visuals from functional Magnetic Resonance Imaging (fMRI) data, introduced as Recon3DMind in our conference work, is of significant interest to both cognitive neuroscience and computer vision. To advance this task, we present the fMRI-3D dataset, which includes data from 15 participants and showcases a total of 4768 3D objects. The dataset comprises two components: fMRI-Shape, previously introduced and accessible at https://huggingface.co/datasets/Fudan-fMRI/fMRI-Shape, and fMRI-Objaverse, proposed in this paper and available at https://huggingface.co/datasets/Fudan-fMRI/fMRI-Objaverse. fMRI-Objaverse includes data from 5 subjects, 4 of whom are also part of the Core set in fMRI-Shape, with each subject viewing 3142 3D objects across 117 categories, all accompanied by text captions. This significantly enhances the diversity and potential applications of the dataset. Additionally, we propose MinD-3D, a novel framework designed to decode 3D visual information from fMRI signals. The framework first extracts and aggregates features from fMRI data using a neuro-fusion encoder, then employs a feature-bridge diffusion model to generate visual features, and finally reconstructs the 3D object using a generative transformer decoder. We establish new benchmarks by designing metrics at both semantic and structural levels to evaluate model performance. Furthermore, we assess our model's effectiveness in an Out-of-Distribution setting and analyze the attribution of the extracted features and the visual ROIs in fMRI signals. Our experiments demonstrate that MinD-3D not only reconstructs 3D objects with high semantic and spatial accuracy but also deepens our understanding of how human brain processes 3D visual information. Project page at: https://jianxgao.github.io/MinD-3D.

  • 6 authors
·
Sep 17, 2024 1

MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream

A lot of research has been devoted to identity documents analysis and recognition on mobile devices. However, no publicly available datasets designed for this particular problem currently exist. There are a few datasets which are useful for associated subtasks but in order to facilitate a more comprehensive scientific and technical approach to identity document recognition more specialized datasets are required. In this paper we present a Mobile Identity Document Video dataset (MIDV-500) consisting of 500 video clips for 50 different identity document types with ground truth which allows to perform research in a wide scope of document analysis problems. The paper presents characteristics of the dataset and evaluation results for existing methods of face detection, text line recognition, and document fields data extraction. Since an important feature of identity documents is their sensitiveness as they contain personal data, all source document images used in MIDV-500 are either in public domain or distributed under public copyright licenses. The main goal of this paper is to present a dataset. However, in addition and as a baseline, we present evaluation results for existing methods for face detection, text line recognition, and document data extraction, using the presented dataset. (The dataset is available for download at ftp://smartengines.com/midv-500/.)

  • 4 authors
·
Jul 16, 2018

From Generation to Detection: A Multimodal Multi-Task Dataset for Benchmarking Health Misinformation

Infodemics and health misinformation have significant negative impact on individuals and society, exacerbating confusion and increasing hesitancy in adopting recommended health measures. Recent advancements in generative AI, capable of producing realistic, human like text and images, have significantly accelerated the spread and expanded the reach of health misinformation, resulting in an alarming surge in its dissemination. To combat the infodemics, most existing work has focused on developing misinformation datasets from social media and fact checking platforms, but has faced limitations in topical coverage, inclusion of AI generation, and accessibility of raw content. To address these issues, we present MM Health, a large scale multimodal misinformation dataset in the health domain consisting of 34,746 news article encompassing both textual and visual information. MM Health includes human-generated multimodal information (5,776 articles) and AI generated multimodal information (28,880 articles) from various SOTA generative AI models. Additionally, We benchmarked our dataset against three tasks (reliability checks, originality checks, and fine-grained AI detection) demonstrating that existing SOTA models struggle to accurately distinguish the reliability and origin of information. Our dataset aims to support the development of misinformation detection across various health scenarios, facilitating the detection of human and machine generated content at multimodal levels.

  • 7 authors
·
May 24, 2025

Android in the Wild: A Large-Scale Dataset for Android Device Control

There is a growing interest in device-control systems that can interpret human natural language instructions and execute them on a digital device by directly controlling its user interface. We present a dataset for device-control research, Android in the Wild (AITW), which is orders of magnitude larger than current datasets. The dataset contains human demonstrations of device interactions, including the screens and actions, and corresponding natural language instructions. It consists of 715k episodes spanning 30k unique instructions, four versions of Android (v10-13),and eight device types (Pixel 2 XL to Pixel 6) with varying screen resolutions. It contains multi-step tasks that require semantic understanding of language and visual context. This dataset poses a new challenge: actions available through the user interface must be inferred from their visual appearance. And, instead of simple UI element-based actions, the action space consists of precise gestures (e.g., horizontal scrolls to operate carousel widgets). We organize our dataset to encourage robustness analysis of device-control systems, i.e., how well a system performs in the presence of new task descriptions, new applications, or new platform versions. We develop two agents and report performance across the dataset. The dataset is available at https://github.com/google-research/google-research/tree/master/android_in_the_wild.

  • 5 authors
·
Jul 19, 2023 1

OffensiveLang: A Community Based Implicit Offensive Language Dataset

The widespread presence of hateful languages on social media has resulted in adverse effects on societal well-being. As a result, addressing this issue with high priority has become very important. Hate speech or offensive languages exist in both explicit and implicit forms, with the latter being more challenging to detect. Current research in this domain encounters several challenges. Firstly, the existing datasets primarily rely on the collection of texts containing explicit offensive keywords, making it challenging to capture implicitly offensive contents that are devoid of these keywords. Secondly, common methodologies tend to focus solely on textual analysis, neglecting the valuable insights that community information can provide. In this research paper, we introduce a novel dataset OffensiveLang, a community based implicit offensive language dataset generated by ChatGPT 3.5 containing data for 38 different target groups. Despite limitations in generating offensive texts using ChatGPT due to ethical constraints, we present a prompt-based approach that effectively generates implicit offensive languages. To ensure data quality, we evaluate the dataset with human. Additionally, we employ a prompt-based zero-shot method with ChatGPT and compare the detection results between human annotation and ChatGPT annotation. We utilize existing state-of-the-art models to see how effective they are in detecting such languages. The dataset is available here: https://github.com/AmitDasRup123/OffensiveLang

  • 13 authors
·
Mar 4, 2024

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.

  • 5 authors
·
Jul 29, 2025

Introducing Three New Benchmark Datasets for Hierarchical Text Classification

Hierarchical Text Classification (HTC) is a natural language processing task with the objective to classify text documents into a set of classes from a structured class hierarchy. Many HTC approaches have been proposed which attempt to leverage the class hierarchy information in various ways to improve classification performance. Machine learning-based classification approaches require large amounts of training data and are most-commonly compared through three established benchmark datasets, which include the Web Of Science (WOS), Reuters Corpus Volume 1 Version 2 (RCV1-V2) and New York Times (NYT) datasets. However, apart from the RCV1-V2 dataset which is well-documented, these datasets are not accompanied with detailed description methodologies. In this paper, we introduce three new HTC benchmark datasets in the domain of research publications which comprise the titles and abstracts of papers from the Web of Science publication database. We first create two baseline datasets which use existing journal-and citation-based classification schemas. Due to the respective shortcomings of these two existing schemas, we propose an approach which combines their classifications to improve the reliability and robustness of the dataset. We evaluate the three created datasets with a clustering-based analysis and show that our proposed approach results in a higher quality dataset where documents that belong to the same class are semantically more similar compared to the other datasets. Finally, we provide the classification performance of four state-of-the-art HTC approaches on these three new datasets to provide baselines for future studies on machine learning-based techniques for scientific publication classification.

  • 3 authors
·
Nov 28, 2024

Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI

As research and industry moves towards large-scale models capable of numerous downstream tasks, the complexity of understanding multi-modal datasets that give nuance to models rapidly increases. A clear and thorough understanding of a dataset's origins, development, intent, ethical considerations and evolution becomes a necessary step for the responsible and informed deployment of models, especially those in people-facing contexts and high-risk domains. However, the burden of this understanding often falls on the intelligibility, conciseness, and comprehensiveness of the documentation. It requires consistency and comparability across the documentation of all datasets involved, and as such documentation must be treated as a user-centric product in and of itself. In this paper, we propose Data Cards for fostering transparent, purposeful and human-centered documentation of datasets within the practical contexts of industry and research. Data Cards are structured summaries of essential facts about various aspects of ML datasets needed by stakeholders across a dataset's lifecycle for responsible AI development. These summaries provide explanations of processes and rationales that shape the data and consequently the models, such as upstream sources, data collection and annotation methods; training and evaluation methods, intended use; or decisions affecting model performance. We also present frameworks that ground Data Cards in real-world utility and human-centricity. Using two case studies, we report on desirable characteristics that support adoption across domains, organizational structures, and audience groups. Finally, we present lessons learned from deploying over 20 Data Cards.

  • 3 authors
·
Apr 3, 2022

Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development

Data is a crucial component of machine learning. The field is reliant on data to train, validate, and test models. With increased technical capabilities, machine learning research has boomed in both academic and industry settings, and one major focus has been on computer vision. Computer vision is a popular domain of machine learning increasingly pertinent to real-world applications, from facial recognition in policing to object detection for autonomous vehicles. Given computer vision's propensity to shape machine learning research and impact human life, we seek to understand disciplinary practices around dataset documentation - how data is collected, curated, annotated, and packaged into datasets for computer vision researchers and practitioners to use for model tuning and development. Specifically, we examine what dataset documentation communicates about the underlying values of vision data and the larger practices and goals of computer vision as a field. To conduct this study, we collected a corpus of about 500 computer vision datasets, from which we sampled 114 dataset publications across different vision tasks. Through both a structured and thematic content analysis, we document a number of values around accepted data practices, what makes desirable data, and the treatment of humans in the dataset construction process. We discuss how computer vision datasets authors value efficiency at the expense of care; universality at the expense of contextuality; impartiality at the expense of positionality; and model work at the expense of data work. Many of the silenced values we identify sit in opposition with social computing practices. We conclude with suggestions on how to better incorporate silenced values into the dataset creation and curation process.

  • 3 authors
·
Aug 9, 2021

HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion

Despite significant advances in large-scale text-to-image models, achieving hyper-realistic human image generation remains a desirable yet unsolved task. Existing models like Stable Diffusion and DALL-E 2 tend to generate human images with incoherent parts or unnatural poses. To tackle these challenges, our key insight is that human image is inherently structural over multiple granularities, from the coarse-level body skeleton to fine-grained spatial geometry. Therefore, capturing such correlations between the explicit appearance and latent structure in one model is essential to generate coherent and natural human images. To this end, we propose a unified framework, HyperHuman, that generates in-the-wild human images of high realism and diverse layouts. Specifically, 1) we first build a large-scale human-centric dataset, named HumanVerse, which consists of 340M images with comprehensive annotations like human pose, depth, and surface normal. 2) Next, we propose a Latent Structural Diffusion Model that simultaneously denoises the depth and surface normal along with the synthesized RGB image. Our model enforces the joint learning of image appearance, spatial relationship, and geometry in a unified network, where each branch in the model complements to each other with both structural awareness and textural richness. 3) Finally, to further boost the visual quality, we propose a Structure-Guided Refiner to compose the predicted conditions for more detailed generation of higher resolution. Extensive experiments demonstrate that our framework yields the state-of-the-art performance, generating hyper-realistic human images under diverse scenarios. Project Page: https://snap-research.github.io/HyperHuman/

  • 9 authors
·
Oct 12, 2023 1

Benchmarks for Pirá 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change

Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset.

  • 8 authors
·
Sep 19, 2023