- AdaTranS: Adapting with Boundary-based Shrinking for End-to-End Speech Translation To alleviate the data scarcity problem in End-to-end speech translation (ST), pre-training on data for speech recognition and machine translation is considered as an important technique. However, the modality gap between speech and text prevents the ST model from efficiently inheriting knowledge from the pre-trained models. In this work, we propose AdaTranS for end-to-end ST. It adapts the speech features with a new shrinking mechanism to mitigate the length mismatch between speech and text features by predicting word boundaries. Experiments on the MUST-C dataset demonstrate that AdaTranS achieves better performance than the other shrinking-based methods, with higher inference speed and lower memory usage. Further experiments also show that AdaTranS can be equipped with additional alignment losses to further improve performance. 3 authors · Dec 17, 2022
- Hybrid Transducer and Attention based Encoder-Decoder Modeling for Speech-to-Text Tasks Transducer and Attention based Encoder-Decoder (AED) are two widely used frameworks for speech-to-text tasks. They are designed for different purposes and each has its own benefits and drawbacks for speech-to-text tasks. In order to leverage strengths of both modeling methods, we propose a solution by combining Transducer and Attention based Encoder-Decoder (TAED) for speech-to-text tasks. The new method leverages AED's strength in non-monotonic sequence to sequence learning while retaining Transducer's streaming property. In the proposed framework, Transducer and AED share the same speech encoder. The predictor in Transducer is replaced by the decoder in the AED model, and the outputs of the decoder are conditioned on the speech inputs instead of outputs from an unconditioned language model. The proposed solution ensures that the model is optimized by covering all possible read/write scenarios and creates a matched environment for streaming applications. We evaluate the proposed approach on the MuST-C dataset and the findings demonstrate that TAED performs significantly better than Transducer for offline automatic speech recognition (ASR) and speech-to-text translation (ST) tasks. In the streaming case, TAED outperforms Transducer in the ASR task and one ST direction while comparable results are achieved in another translation direction. 8 authors · May 4, 2023
- Pre-training for Speech Translation: CTC Meets Optimal Transport The gap between speech and text modalities is a major challenge in speech-to-text translation (ST). Different methods have been proposed to reduce this gap, but most of them require architectural changes in ST training. In this work, we propose to mitigate this issue at the pre-training stage, requiring no change in the ST model. First, we show that the connectionist temporal classification (CTC) loss can reduce the modality gap by design. We provide a quantitative comparison with the more common cross-entropy loss, showing that pre-training with CTC consistently achieves better final ST accuracy. Nevertheless, CTC is only a partial solution and thus, in our second contribution, we propose a novel pre-training method combining CTC and optimal transport to further reduce this gap. Our method pre-trains a Siamese-like model composed of two encoders, one for acoustic inputs and the other for textual inputs, such that they produce representations that are close to each other in the Wasserstein space. Extensive experiments on the standard CoVoST-2 and MuST-C datasets show that our pre-training method applied to the vanilla encoder-decoder Transformer achieves state-of-the-art performance under the no-external-data setting, and performs on par with recent strong multi-task learning systems trained with external data. Finally, our method can also be applied on top of these multi-task systems, leading to further improvements for these models. Code and pre-trained models are available at https://github.com/formiel/fairseq. 6 authors · Jan 27, 2023
- CoT-ST: Enhancing LLM-based Speech Translation with Multimodal Chain-of-Thought Speech Language Models (SLMs) have demonstrated impressive performance on speech translation tasks. However, existing research primarily focuses on direct instruction fine-tuning and often overlooks the inherent reasoning capabilities of SLMs. In this paper, we introduce a three-stage training framework designed to activate the chain-of-thought (CoT) capabilities of SLMs. We propose CoT-ST, a speech translation model that utilizes multimodal CoT to decompose speech translation into sequential steps of speech recognition and translation. We validated the effectiveness of our method on two datasets: the CoVoST-2 dataset and MuST-C dataset. The experimental results demonstrate that CoT-ST outperforms previous state-of-the-art methods, achieving higher BLEU scores (CoVoST-2 en-ja: 30.5->30.8, en-zh: 45.2->47.7, MuST-C en-zh: 19.6->21.2). This work is open sourced at https://github.com/X-LANCE/SLAM-LLM/tree/main/examples/st_covost2 . 9 authors · Sep 28, 2024
1 Simultaneous Machine Translation with Large Language Models Large language models (LLM) have demonstrated their abilities to solve various natural language processing tasks through dialogue-based interactions. For instance, research indicates that LLMs can achieve competitive performance in offline machine translation tasks for high-resource languages. However, applying LLMs to simultaneous machine translation (SimulMT) poses many challenges, including issues related to the training-inference mismatch arising from different decoding patterns. In this paper, we explore the feasibility of utilizing LLMs for SimulMT. Building upon conventional approaches, we introduce a simple yet effective mixture policy that enables LLMs to engage in SimulMT without requiring additional training. Furthermore, after Supervised Fine-Tuning (SFT) on a mixture of full and prefix sentences, the model exhibits significant performance improvements. Our experiments, conducted with Llama2-7B-chat on nine language pairs from the MUST-C dataset, demonstrate that LLM can achieve translation quality and latency comparable to dedicated SimulMT models. 6 authors · Sep 13, 2023
- Shiftable Context: Addressing Training-Inference Context Mismatch in Simultaneous Speech Translation Transformer models using segment-based processing have been an effective architecture for simultaneous speech translation. However, such models create a context mismatch between training and inference environments, hindering potential translation accuracy. We solve this issue by proposing Shiftable Context, a simple yet effective scheme to ensure that consistent segment and context sizes are maintained throughout training and inference, even with the presence of partially filled segments due to the streaming nature of simultaneous translation. Shiftable Context is also broadly applicable to segment-based transformers for streaming tasks. Our experiments on the English-German, English-French, and English-Spanish language pairs from the MUST-C dataset demonstrate that when applied to the Augmented Memory Transformer, a state-of-the-art model for simultaneous speech translation, the proposed scheme achieves an average increase of 2.09, 1.83, and 1.95 BLEU scores across each wait-k value for the three language pairs, respectively, with a minimal impact on computation-aware Average Lagging. 3 authors · Jul 3, 2023
- Unified Speech-Text Pre-training for Speech Translation and Recognition We describe a method to jointly pre-train speech and text in an encoder-decoder modeling framework for speech translation and recognition. The proposed method incorporates four self-supervised and supervised subtasks for cross modality learning. A self-supervised speech subtask leverages unlabelled speech data, and a (self-)supervised text to text subtask makes use of abundant text training data. Two auxiliary supervised speech tasks are included to unify speech and text modeling space. Our contribution lies in integrating linguistic information from the text corpus into the speech pre-training. Detailed analysis reveals learning interference among subtasks. Two pre-training configurations for speech translation and recognition, respectively, are presented to alleviate subtask interference. Our experiments show the proposed method can effectively fuse speech and text information into one model. It achieves between 1.7 and 2.3 BLEU improvement above the state of the art on the MuST-C speech translation dataset and comparable WERs to wav2vec 2.0 on the Librispeech speech recognition task. 11 authors · Apr 11, 2022
1 Speech Translation Refinement using Large Language Models Recent advancements in large language models (LLMs) have demonstrated their remarkable capabilities across various language tasks. Inspired by the success of text-to-text translation refinement, this paper investigates how LLMs can improve the performance of speech translation by introducing a joint refinement process. Through the joint refinement of speech translation (ST) and automatic speech recognition (ASR) transcription via LLMs, the performance of the ST model is significantly improved in both training-free in-context learning and parameter-efficient fine-tuning scenarios. Additionally, we explore the effect of document-level context on refinement under the context-aware fine-tuning scenario. Experimental results on the MuST-C and CoVoST 2 datasets, which include seven translation tasks, demonstrate the effectiveness of the proposed approach using several popular LLMs including GPT-3.5-turbo, LLaMA3-8B, and Mistral-12B. Further analysis further suggests that jointly refining both transcription and translation yields better performance compared to refining translation alone. Meanwhile, incorporating document-level context significantly enhances refinement performance. We release our code and datasets on GitHub. 6 authors · Jan 25, 2025
- Dealing with training and test segmentation mismatch: FBK@IWSLT2021 This paper describes FBK's system submission to the IWSLT 2021 Offline Speech Translation task. We participated with a direct model, which is a Transformer-based architecture trained to translate English speech audio data into German texts. The training pipeline is characterized by knowledge distillation and a two-step fine-tuning procedure. Both knowledge distillation and the first fine-tuning step are carried out on manually segmented real and synthetic data, the latter being generated with an MT system trained on the available corpora. Differently, the second fine-tuning step is carried out on a random segmentation of the MuST-C v2 En-De dataset. Its main goal is to reduce the performance drops occurring when a speech translation model trained on manually segmented data (i.e. an ideal, sentence-like segmentation) is evaluated on automatically segmented audio (i.e. actual, more realistic testing conditions). For the same purpose, a custom hybrid segmentation procedure that accounts for both audio content (pauses) and for the length of the produced segments is applied to the test data before passing them to the system. At inference time, we compared this procedure with a baseline segmentation method based on Voice Activity Detection (VAD). Our results indicate the effectiveness of the proposed hybrid approach, shown by a reduction of the gap with manual segmentation from 8.3 to 1.4 BLEU points. 4 authors · Jun 23, 2021
2 MedAlpaca -- An Open-Source Collection of Medical Conversational AI Models and Training Data As large language models (LLMs) like OpenAI's GPT series continue to make strides, we witness the emergence of artificial intelligence applications in an ever-expanding range of fields. In medicine, these LLMs hold considerable promise for improving medical workflows, diagnostics, patient care, and education. Yet, there is an urgent need for open-source models that can be deployed on-premises to safeguard patient privacy. In our work, we present an innovative dataset consisting of over 160,000 entries, specifically crafted to fine-tune LLMs for effective medical applications. We investigate the impact of fine-tuning these datasets on publicly accessible pre-trained LLMs, and subsequently, we juxtapose the performance of pre-trained-only models against the fine-tuned models concerning the examinations that future medical doctors must pass to achieve certification. 8 authors · Apr 14, 2023