34 Extending Llama-3's Context Ten-Fold Overnight We extend the context length of Llama-3-8B-Instruct from 8K to 80K via QLoRA fine-tuning. The entire training cycle is super efficient, which takes 8 hours on one 8xA800 (80G) GPU machine. The resulted model exhibits superior performances across a broad range of evaluation tasks, such as NIHS, topic retrieval, and long-context language understanding; meanwhile, it also well preserves the original capability over short contexts. The dramatic context extension is mainly attributed to merely 3.5K synthetic training samples generated by GPT-4 , which indicates the LLMs' inherent (yet largely underestimated) potential to extend its original context length. In fact, the context length could be extended far beyond 80K with more computation resources. Therefore, the team will publicly release the entire resources (including data, model, data generation pipeline, training code) so as to facilitate the future research from the community: https://github.com/FlagOpen/FlagEmbedding. 7 authors · Apr 30, 2024 3
- wav2sleep: A Unified Multi-Modal Approach to Sleep Stage Classification from Physiological Signals Accurate classification of sleep stages from less obtrusive sensor measurements such as the electrocardiogram (ECG) or photoplethysmogram (PPG) could enable important applications in sleep medicine. Existing approaches to this problem have typically used deep learning models designed and trained to operate on one or more specific input signals. However, the datasets used to develop these models often do not contain the same sets of input signals. Some signals, particularly PPG, are much less prevalent than others, and this has previously been addressed with techniques such as transfer learning. Additionally, only training on one or more fixed modalities precludes cross-modal information transfer from other sources, which has proved valuable in other problem domains. To address this, we introduce wav2sleep, a unified model designed to operate on variable sets of input signals during training and inference. After jointly training on over 10,000 overnight recordings from six publicly available polysomnography datasets, including SHHS and MESA, wav2sleep outperforms existing sleep stage classification models across test-time input combinations including ECG, PPG, and respiratory signals. 2 authors · Nov 7, 2024
- Semantic Parsing with Candidate Expressions for Knowledge Base Question Answering Semantic parsers convert natural language to logical forms, which can be evaluated on knowledge bases (KBs) to produce denotations. Recent semantic parsers have been developed with sequence-to-sequence (seq2seq) pre-trained language models (PLMs) or large language models, where the models treat logical forms as sequences of tokens. For syntactic and semantic validity, the semantic parsers use grammars that enable constrained decoding. However, the grammars lack the ability to utilize large information of KBs, although logical forms contain representations of KB elements, such as entities or relations. In this work, we propose a grammar augmented with candidate expressions for semantic parsing on a large KB with a seq2seq PLM. The grammar defines actions as production rules, and our semantic parser predicts actions during inference under the constraints by types and candidate expressions. We apply the grammar to knowledge base question answering, where the constraints by candidate expressions assist a semantic parser to generate valid KB elements. We also introduce two special rules, sub-type inference and union types, and a mask caching algorithm. In particular, sub-type inference and the mask caching algorithm greatly increase the decoding speed of our semantic parser. We experimented on two benchmarks, KQA Pro and Overnight, where the constraints by candidate expressions increased the accuracy of our semantic parser, whether it was trained with strong supervision or weak supervision. In addition, our semantic parser had a fast decoding speed in the experiments. Our source code is publicly available at https://github.com/daehwannam/candexpr-sp.git. 2 authors · Oct 1, 2024
- AutoQA: From Databases To QA Semantic Parsers With Only Synthetic Training Data We propose AutoQA, a methodology and toolkit to generate semantic parsers that answer questions on databases, with no manual effort. Given a database schema and its data, AutoQA automatically generates a large set of high-quality questions for training that covers different database operations. It uses automatic paraphrasing combined with template-based parsing to find alternative expressions of an attribute in different parts of speech. It also uses a novel filtered auto-paraphraser to generate correct paraphrases of entire sentences. We apply AutoQA to the Schema2QA dataset and obtain an average logical form accuracy of 62.9% when tested on natural questions, which is only 6.4% lower than a model trained with expert natural language annotations and paraphrase data collected from crowdworkers. To demonstrate the generality of AutoQA, we also apply it to the Overnight dataset. AutoQA achieves 69.8% answer accuracy, 16.4% higher than the state-of-the-art zero-shot models and only 5.2% lower than the same model trained with human data. Stanford Open Virtual Assistant Lab (OVAL) · Oct 9, 2020
- Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention This paper describes a novel text-to-speech (TTS) technique based on deep convolutional neural networks (CNN), without use of any recurrent units. Recurrent neural networks (RNN) have become a standard technique to model sequential data recently, and this technique has been used in some cutting-edge neural TTS techniques. However, training RNN components often requires a very powerful computer, or a very long time, typically several days or weeks. Recent other studies, on the other hand, have shown that CNN-based sequence synthesis can be much faster than RNN-based techniques, because of high parallelizability. The objective of this paper is to show that an alternative neural TTS based only on CNN alleviate these economic costs of training. In our experiment, the proposed Deep Convolutional TTS was sufficiently trained overnight (15 hours), using an ordinary gaming PC equipped with two GPUs, while the quality of the synthesized speech was almost acceptable. 3 authors · Oct 24, 2017
3 Grammar Prompting for Domain-Specific Language Generation with Large Language Models Large language models (LLMs) can learn to perform a wide range of natural language tasks from just a handful of in-context examples. However, for generating strings from highly structured languages (e.g., semantic parsing to complex domain-specific languages), it is challenging for the LLM to generalize from just a few exemplars. We explore grammar prompting as a simple approach for enabling LLMs to use external knowledge and domain-specific constraints, expressed through a grammar expressed in Backus--Naur Form (BNF), during in-context learning. Grammar prompting augments each demonstration example with a specialized grammar that is minimally sufficient for generating the particular output example, where the specialized grammar is a subset of the full DSL grammar. For inference, the LLM first predicts a BNF grammar given a test input, and then generates the output according to the rules of the grammar. Experiments demonstrate that grammar prompting can enable LLMs to perform competitively on a diverse set of DSL generation tasks, including semantic parsing (SMCalFlow, Overnight, GeoQuery), PDDL planning, and even molecule generation (SMILES). 6 authors · May 30, 2023 4
- Learning to Decompose: Hypothetical Question Decomposition Based on Comparable Texts Explicit decomposition modeling, which involves breaking down complex tasks into more straightforward and often more interpretable sub-tasks, has long been a central theme in developing robust and interpretable NLU systems. However, despite the many datasets and resources built as part of this effort, the majority have small-scale annotations and limited scope, which is insufficient to solve general decomposition tasks. In this paper, we look at large-scale intermediate pre-training of decomposition-based transformers using distant supervision from comparable texts, particularly large-scale parallel news. We show that with such intermediate pre-training, developing robust decomposition-based models for a diverse range of tasks becomes more feasible. For example, on semantic parsing, our model, DecompT5, improves 20% to 30% on two datasets, Overnight and TORQUE, over the baseline language model. We further use DecompT5 to build a novel decomposition-based QA system named DecompEntail, improving over state-of-the-art models, including GPT-3, on both HotpotQA and StrategyQA by 8% and 4%, respectively. 4 authors · Oct 30, 2022
3 Scaling up GANs for Text-to-Image Synthesis The recent success of text-to-image synthesis has taken the world by storm and captured the general public's imagination. From a technical standpoint, it also marked a drastic change in the favored architecture to design generative image models. GANs used to be the de facto choice, with techniques like StyleGAN. With DALL-E 2, auto-regressive and diffusion models became the new standard for large-scale generative models overnight. This rapid shift raises a fundamental question: can we scale up GANs to benefit from large datasets like LAION? We find that na\"Ively increasing the capacity of the StyleGAN architecture quickly becomes unstable. We introduce GigaGAN, a new GAN architecture that far exceeds this limit, demonstrating GANs as a viable option for text-to-image synthesis. GigaGAN offers three major advantages. First, it is orders of magnitude faster at inference time, taking only 0.13 seconds to synthesize a 512px image. Second, it can synthesize high-resolution images, for example, 16-megapixel pixels in 3.66 seconds. Finally, GigaGAN supports various latent space editing applications such as latent interpolation, style mixing, and vector arithmetic operations. 7 authors · Mar 9, 2023 1