- Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches. Code: https://github.com/IINemo/lm-polygraph Benchmark: https://huggingface.co/LM-Polygraph 15 authors · Jun 21, 2024
- ToxBench: A Binding Affinity Prediction Benchmark with AB-FEP-Calculated Labels for Human Estrogen Receptor Alpha Protein-ligand binding affinity prediction is essential for drug discovery and toxicity assessment. While machine learning (ML) promises fast and accurate predictions, its progress is constrained by the availability of reliable data. In contrast, physics-based methods such as absolute binding free energy perturbation (AB-FEP) deliver high accuracy but are computationally prohibitive for high-throughput applications. To bridge this gap, we introduce ToxBench, the first large-scale AB-FEP dataset designed for ML development and focused on a single pharmaceutically critical target, Human Estrogen Receptor Alpha (ERalpha). ToxBench contains 8,770 ERalpha-ligand complex structures with binding free energies computed via AB-FEP with a subset validated against experimental affinities at 1.75 kcal/mol RMSE, along with non-overlapping ligand splits to assess model generalizability. Using ToxBench, we further benchmark state-of-the-art ML methods, and notably, our proposed DualBind model, which employs a dual-loss framework to effectively learn the binding energy function. The benchmark results demonstrate the superior performance of DualBind and the potential of ML to approximate AB-FEP at a fraction of the computational cost. 22 authors · Jul 11, 2025