new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

The Impact of Positional Encoding on Length Generalization in Transformers

Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.

  • 5 authors
·
May 30, 2023

LongEmbed: Extending Embedding Models for Long Context Retrieval

Embedding models play a pivot role in modern NLP applications such as IR and RAG. While the context limit of LLMs has been pushed beyond 1 million tokens, embedding models are still confined to a narrow context window not exceeding 8k tokens, refrained from application scenarios requiring long inputs such as legal contracts. This paper explores context window extension of existing embedding models, pushing the limit to 32k without requiring additional training. First, we examine the performance of current embedding models for long context retrieval on our newly constructed LongEmbed benchmark. LongEmbed comprises two synthetic tasks and four carefully chosen real-world tasks, featuring documents of varying length and dispersed target information. Benchmarking results underscore huge room for improvement in these models. Based on this, comprehensive experiments show that training-free context window extension strategies like position interpolation can effectively extend the context window of existing embedding models by several folds, regardless of their original context being 512 or beyond 4k. Furthermore, for models employing absolute position encoding (APE), we show the possibility of further fine-tuning to harvest notable performance gains while strictly preserving original behavior for short inputs. For models using rotary position embedding (RoPE), significant enhancements are observed when employing RoPE-specific methods, such as NTK and SelfExtend, indicating RoPE's superiority over APE for context window extension. To facilitate future research, we release E5-Base-4k and E5-RoPE-Base, along with the LongEmbed benchmark.

  • 7 authors
·
Apr 18, 2024 2

Taiyi-Diffusion-XL: Advancing Bilingual Text-to-Image Generation with Large Vision-Language Model Support

Recent advancements in text-to-image models have significantly enhanced image generation capabilities, yet a notable gap of open-source models persists in bilingual or Chinese language support. To address this need, we present Taiyi-Diffusion-XL, a new Chinese and English bilingual text-to-image model which is developed by extending the capabilities of CLIP and Stable-Diffusion-XL through a process of bilingual continuous pre-training. This approach includes the efficient expansion of vocabulary by integrating the most frequently used Chinese characters into CLIP's tokenizer and embedding layers, coupled with an absolute position encoding expansion. Additionally, we enrich text prompts by large vision-language model, leading to better images captions and possess higher visual quality. These enhancements are subsequently applied to downstream text-to-image models. Our empirical results indicate that the developed CLIP model excels in bilingual image-text retrieval.Furthermore, the bilingual image generation capabilities of Taiyi-Diffusion-XL surpass previous models. This research leads to the development and open-sourcing of the Taiyi-Diffusion-XL model, representing a notable advancement in the field of image generation, particularly for Chinese language applications. This contribution is a step forward in addressing the need for more diverse language support in multimodal research. The model and demonstration are made publicly available at https://huggingface.co/IDEA-CCNL/Taiyi-Stable-Diffusion-XL-3.5B/{this https URL}, fostering further research and collaboration in this domain.

  • 9 authors
·
Jan 26, 2024 2

LLM as Effective Streaming Processor: Bridging Streaming-Batch Mismatches with Group Position Encoding

Large Language Models (LLMs) are primarily designed for batch processing. Existing methods for adapting LLMs to streaming rely either on expensive re-encoding or specialized architectures with limited scalability. This work identifies three key mismatches in adapting batch-oriented LLMs to streaming: (1) input-attention, (2) output-attention, and (3) position-ID mismatches. While it is commonly assumed that the latter two mismatches require frequent re-encoding, our analysis reveals that only the input-attention mismatch significantly impacts performance, indicating re-encoding outputs is largely unnecessary. To better understand this discrepancy with the common assumption, we provide the first comprehensive analysis of the impact of position encoding on LLMs in streaming, showing that preserving relative positions within source and target contexts is more critical than maintaining absolute order. Motivated by the above analysis, we introduce a group position encoding paradigm built on batch architectures to enhance consistency between streaming and batch modes. Extensive experiments on cross-lingual and cross-modal tasks demonstrate that our method outperforms existing approaches. Our method requires no architectural modifications, exhibits strong generalization in both streaming and batch modes. The code is available at repository https://github.com/EIT-NLP/StreamingLLM.

  • 7 authors
·
May 22 1

DATE: Dynamic Absolute Time Enhancement for Long Video Understanding

Long video understanding remains a fundamental challenge for multimodal large language models (MLLMs), particularly in tasks requiring precise temporal reasoning and event localization. Existing approaches typically adopt uniform frame sampling and rely on implicit position encodings to model temporal order. However, these methods struggle with long-range dependencies, leading to critical information loss and degraded temporal comprehension. In this paper, we propose Dynamic Absolute Time Enhancement (DATE) that enhances temporal awareness in MLLMs through the Timestamp Injection Mechanism (TIM) and a semantically guided Temporal-Aware Similarity Sampling (TASS) strategy. Specifically, we interleave video frame embeddings with textual timestamp tokens to construct a continuous temporal reference system. We further reformulate the video sampling problem as a vision-language retrieval task and introduce a two-stage algorithm to ensure both semantic relevance and temporal coverage: enriching each query into a descriptive caption to better align with the vision feature, and sampling key event with a similarity-driven temporally regularized greedy strategy. Our method achieves remarkable improvements w.r.t. absolute time understanding and key event localization, resulting in state-of-the-art performance among 7B and 72B models on hour-long video benchmarks. Particularly, our 7B model even exceeds many 72B models on some benchmarks.

  • 4 authors
·
Sep 11