Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeScaling of free cumulants in closed system-bath setups
The Eigenstate Thermalization Hypothesis (ETH) has been established as a cornerstone for understanding thermalization in quantum many-body systems. Recently, there has been growing interest in the full ETH, which extends the framework of the conventional ETH and postulates a smooth function to describe the multi-point correlations among matrix elements. Within this framework, free cumulants play a central role, and most previous studies have primarily focused on closed systems. In this paper, we extend the analysis to a system-bath setup, considering both an idealized case with a random-matrix bath and a more realistic scenario where the bath is modeled as a defect Ising chain. In both cases, we uncover a universal scaling of microcanonical free cumulants of system observables with respect to the interaction strength. Furthermore we establish a connection between this scaling behavior and the thermalization dynamics of the thermal free cumulants of corresponding observables.
Boundless Socratic Learning with Language Games
An agent trained within a closed system can master any desired capability, as long as the following three conditions hold: (a) it receives sufficiently informative and aligned feedback, (b) its coverage of experience/data is broad enough, and (c) it has sufficient capacity and resource. In this position paper, we justify these conditions, and consider what limitations arise from (a) and (b) in closed systems, when assuming that (c) is not a bottleneck. Considering the special case of agents with matching input and output spaces (namely, language), we argue that such pure recursive self-improvement, dubbed "Socratic learning", can boost performance vastly beyond what is present in its initial data or knowledge, and is only limited by time, as well as gradual misalignment concerns. Furthermore, we propose a constructive framework to implement it, based on the notion of language games.
Completely Discretized, Finite Quantum Mechanics
I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schr\"odinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete and finite set of state vectors. The biggest challenges to the viability of such a model come from cosmological considerations. The theory may have implications for questions of mathematical realism and finitism.
Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
Generative AI-based closed-loop fMRI system
While generative AI is now widespread and useful in society, there are potential risks of misuse, e.g., unconsciously influencing cognitive processes or decision-making. Although this causes a security problem in the cognitive domain, there has been no research about neural and computational mechanisms counteracting the impact of malicious generative AI in humans. We propose DecNefGAN, a novel framework that combines a generative adversarial system and a neural reinforcement model. More specifically, DecNefGAN bridges human and generative AI in a closed-loop system, with the AI creating stimuli that induce specific mental states, thus exerting external control over neural activity. The objective of the human is the opposite, to compete and reach an orthogonal mental state. This framework can contribute to elucidating how the human brain responds to and counteracts the potential influence of generative AI.
NovelSeek: When Agent Becomes the Scientist -- Building Closed-Loop System from Hypothesis to Verification
Artificial Intelligence (AI) is accelerating the transformation of scientific research paradigms, not only enhancing research efficiency but also driving innovation. We introduce NovelSeek, a unified closed-loop multi-agent framework to conduct Autonomous Scientific Research (ASR) across various scientific research fields, enabling researchers to tackle complicated problems in these fields with unprecedented speed and precision. NovelSeek highlights three key advantages: 1) Scalability: NovelSeek has demonstrated its versatility across 12 scientific research tasks, capable of generating innovative ideas to enhance the performance of baseline code. 2) Interactivity: NovelSeek provides an interface for human expert feedback and multi-agent interaction in automated end-to-end processes, allowing for the seamless integration of domain expert knowledge. 3) Efficiency: NovelSeek has achieved promising performance gains in several scientific fields with significantly less time cost compared to human efforts. For instance, in reaction yield prediction, it increased from 27.6% to 35.4% in just 12 hours; in enhancer activity prediction, accuracy rose from 0.52 to 0.79 with only 4 hours of processing; and in 2D semantic segmentation, precision advanced from 78.8% to 81.0% in a mere 30 hours.
Cognitive Kernel: An Open-source Agent System towards Generalist Autopilots
We introduce Cognitive Kernel, an open-source agent system towards the goal of generalist autopilots. Unlike copilot systems, which primarily rely on users to provide essential state information (e.g., task descriptions) and assist users by answering questions or auto-completing contents, autopilot systems must complete tasks from start to finish independently, which requires the system to acquire the state information from the environments actively. To achieve this, an autopilot system should be capable of understanding user intents, actively gathering necessary information from various real-world sources, and making wise decisions. Cognitive Kernel adopts a model-centric design. In our implementation, the central policy model (a fine-tuned LLM) initiates interactions with the environment using a combination of atomic actions, such as opening files, clicking buttons, saving intermediate results to memory, or calling the LLM itself. This differs from the widely used environment-centric design, where a task-specific environment with predefined actions is fixed, and the policy model is limited to selecting the correct action from a given set of options. Our design facilitates seamless information flow across various sources and provides greater flexibility. We evaluate our system in three use cases: real-time information management, private information management, and long-term memory management. The results demonstrate that Cognitive Kernel achieves better or comparable performance to other closed-source systems in these scenarios. Cognitive Kernel is fully dockerized, ensuring everyone can deploy it privately and securely. We open-source the system and the backbone model to encourage further research on LLM-driven autopilot systems.
Optimistic Feasible Search for Closed-Loop Fair Threshold Decision-Making
Closed-loop decision-making systems (e.g., lending, screening, or recidivism risk assessment) often operate under fairness and service constraints while inducing feedback effects: decisions change who appears in the future, yielding non-stationary data and potentially amplifying disparities. We study online learning of a one-dimensional threshold policy from bandit feedback under demographic parity (DP) and, optionally, service-rate constraints. The learner observes only a scalar score each round and selects a threshold; reward and constraint residuals are revealed only for the chosen threshold. We propose Optimistic Feasible Search (OFS), a simple grid-based method that maintains confidence bounds for reward and constraint residuals for each candidate threshold. At each round, OFS selects a threshold that appears feasible under confidence bounds and, among those, maximizes optimistic reward; if no threshold appears feasible, OFS selects the threshold minimizing optimistic constraint violation. This design directly targets feasible high-utility thresholds and is particularly effective for low-dimensional, interpretable policy classes where discretization is natural. We evaluate OFS on (i) a synthetic closed-loop benchmark with stable contraction dynamics and (ii) two semi-synthetic closed-loop benchmarks grounded in German Credit and COMPAS, constructed by training a score model and feeding group-dependent acceptance decisions back into population composition. Across all environments, OFS achieves higher reward with smaller cumulative constraint violation than unconstrained and primal-dual bandit baselines, and is near-oracle relative to the best feasible fixed threshold under the same sweep procedure. Experiments are reproducible and organized with double-blind-friendly relative outputs.
ReasonPlan: Unified Scene Prediction and Decision Reasoning for Closed-loop Autonomous Driving
Due to the powerful vision-language reasoning and generalization abilities, multimodal large language models (MLLMs) have garnered significant attention in the field of end-to-end (E2E) autonomous driving. However, their application to closed-loop systems remains underexplored, and current MLLM-based methods have not shown clear superiority to mainstream E2E imitation learning approaches. In this work, we propose ReasonPlan, a novel MLLM fine-tuning framework designed for closed-loop driving through holistic reasoning with a self-supervised Next Scene Prediction task and supervised Decision Chain-of-Thought process. This dual mechanism encourages the model to align visual representations with actionable driving context, while promoting interpretable and causally grounded decision making. We curate a planning-oriented decision reasoning dataset, namely PDR, comprising 210k diverse and high-quality samples. Our method outperforms the mainstream E2E imitation learning method by a large margin of 19% L2 and 16.1 driving score on Bench2Drive benchmark. Furthermore, ReasonPlan demonstrates strong zero-shot generalization on unseen DOS benchmark, highlighting its adaptability in handling zero-shot corner cases. Code and dataset will be found in https://github.com/Liuxueyi/ReasonPlan.
FACESEC: A Fine-grained Robustness Evaluation Framework for Face Recognition Systems
We present FACESEC, a framework for fine-grained robustness evaluation of face recognition systems. FACESEC evaluation is performed along four dimensions of adversarial modeling: the nature of perturbation (e.g., pixel-level or face accessories), the attacker's system knowledge (about training data and learning architecture), goals (dodging or impersonation), and capability (tailored to individual inputs or across sets of these). We use FACESEC to study five face recognition systems in both closed-set and open-set settings, and to evaluate the state-of-the-art approach for defending against physically realizable attacks on these. We find that accurate knowledge of neural architecture is significantly more important than knowledge of the training data in black-box attacks. Moreover, we observe that open-set face recognition systems are more vulnerable than closed-set systems under different types of attacks. The efficacy of attacks for other threat model variations, however, appears highly dependent on both the nature of perturbation and the neural network architecture. For example, attacks that involve adversarial face masks are usually more potent, even against adversarially trained models, and the ArcFace architecture tends to be more robust than the others.
Numina-Lean-Agent: An Open and General Agentic Reasoning System for Formal Mathematics
Agentic systems have recently become the dominant paradigm for formal theorem proving, achieving strong performance by coordinating multiple models and tools. However, existing approaches often rely on task-specific pipelines and trained formal provers, limiting their flexibility and reproducibility. In this paper, we propose the paradigm that directly uses a general coding agent as a formal math reasoner. This paradigm is motivated by (1) A general coding agent provides a natural interface for diverse reasoning tasks beyond proving, (2) Performance can be improved by simply replacing the underlying base model, without training, and (3) MCP enables flexible extension and autonomous calling of specialized tools, avoiding complex design. Based on this paradigm, we introduce Numina-Lean-Agent, which combines Claude Code with Numina-Lean-MCP to enable autonomous interaction with Lean, retrieval of relevant theorems, informal proving and auxiliary reasoning tools. Using Claude Opus 4.5 as the base model, Numina-Lean-Agent solves all problems in Putnam 2025 (12 / 12), matching the best closed-source system. Beyond benchmark evaluation, we further demonstrate its generality by interacting with mathematicians to successfully formalize the Brascamp-Lieb theorem. We release Numina-Lean-Agent and all solutions at https://github.com/project-numina/numina-lean-agent.
The Open Source Advantage in Large Language Models (LLMs)
Large language models (LLMs) mark a key shift in natural language processing (NLP), having advanced text generation, translation, and domain-specific reasoning. Closed-source models like GPT-4, powered by proprietary datasets and extensive computational resources, lead with state-of-the-art performance today. However, they face criticism for their "black box" nature and for limiting accessibility in a manner that hinders reproducibility and equitable AI development. By contrast, open-source initiatives like LLaMA and BLOOM prioritize democratization through community-driven development and computational efficiency. These models have significantly reduced performance gaps, particularly in linguistic diversity and domain-specific applications, while providing accessible tools for global researchers and developers. Notably, both paradigms rely on foundational architectural innovations, such as the Transformer framework by Vaswani et al. (2017). Closed-source models excel by scaling effectively, while open-source models adapt to real-world applications in underrepresented languages and domains. Techniques like Low-Rank Adaptation (LoRA) and instruction-tuning datasets enable open-source models to achieve competitive results despite limited resources. To be sure, the tension between closed-source and open-source approaches underscores a broader debate on transparency versus proprietary control in AI. Ethical considerations further highlight this divide. Closed-source systems restrict external scrutiny, while open-source models promote reproducibility and collaboration but lack standardized auditing documentation frameworks to mitigate biases. Hybrid approaches that leverage the strengths of both paradigms are likely to shape the future of LLM innovation, ensuring accessibility, competitive technical performance, and ethical deployment.
Socratic-Zero : Bootstrapping Reasoning via Data-Free Agent Co-evolution
Recent breakthroughs in large language models (LLMs) on reasoning tasks rely heavily on massive, high-quality datasets-typically human-annotated and thus difficult to scale. While data synthesis or distillation offers a promising alternative, existing methods struggle with inconsistent data quality and an inability to dynamically adapt to the evolving capabilities of the model, leading to suboptimal training signals. To address these limitations, we introduce Socratic-Zero, a fully autonomous framework that generates high-quality training data from minimal seed examples through the co-evolution of three agents: the Teacher, the Solver, and the Generator. The Solver continuously refines its reasoning by learning from preference feedback on both successful and failed trajectories; the Teacher adaptively crafts increasingly challenging questions based on the Solver's weaknesses; and the Generator distills the Teacher's question-design strategy to enable scalable, high-fidelity curriculum generation. This closed-loop system produces a self-improving curriculum-requiring no pre-existing tasks or labels. Remarkably, starting from only 100 seed questions, our Socratic-Solver-8B achieves an average gain of +20.2 percentage points over prior data synthesis methods across seven mathematical reasoning benchmarks (AMC23, AIME24-25, Olympiad, MATH-500, Minerva, and GSM8K), with consistent gains on both Qwen3 and GLM4 series models. Even more surprisingly, synthetic data from Socratic-Generator-32B enables student LLMs to achieve superior performance compared to other state-of-the-art (SOTA) commercial LLMs on these benchmarks, including Qwen3-235B-A22B, DeepSeek-V3.1-671B, GPT-5, Gemini-2.5-Pro, Grok-4, and Claude-4.1-Opus.
Boosting Unsupervised Video Instance Segmentation with Automatic Quality-Guided Self-Training
Video Instance Segmentation (VIS) faces significant annotation challenges due to its dual requirements of pixel-level masks and temporal consistency labels. While recent unsupervised methods like VideoCutLER eliminate optical flow dependencies through synthetic data, they remain constrained by the synthetic-to-real domain gap. We present AutoQ-VIS, a novel unsupervised framework that bridges this gap through quality-guided self-training. Our approach establishes a closed-loop system between pseudo-label generation and automatic quality assessment, enabling progressive adaptation from synthetic to real videos. Experiments demonstrate state-of-the-art performance with 52.6 AP_{50} on YouTubeVIS-2019 val set, surpassing the previous state-of-the-art VideoCutLER by 4.4%, while requiring no human annotations. This demonstrates the viability of quality-aware self-training for unsupervised VIS. We will release the code at https://github.com/wcbup/AutoQ-VIS.
AutoQ-VIS: Improving Unsupervised Video Instance Segmentation via Automatic Quality Assessment
Video Instance Segmentation (VIS) faces significant annotation challenges due to its dual requirements of pixel-level masks and temporal consistency labels. While recent unsupervised methods like VideoCutLER eliminate optical flow dependencies through synthetic data, they remain constrained by the synthetic-to-real domain gap. We present AutoQ-VIS, a novel unsupervised framework that bridges this gap through quality-guided self-training. Our approach establishes a closed-loop system between pseudo-label generation and automatic quality assessment, enabling progressive adaptation from synthetic to real videos. Experiments demonstrate state-of-the-art performance with 52.6 AP_{50} on YouTubeVIS-2019 val set, surpassing the previous state-of-the-art VideoCutLER by 4.4%, while requiring no human annotations. This demonstrates the viability of quality-aware self-training for unsupervised VIS. The source code of our method is available at https://github.com/wcbup/AutoQ-VIS.
MLLM-DataEngine: An Iterative Refinement Approach for MLLM
Despite the great advance of Multimodal Large Language Models (MLLMs) in both instruction dataset building and benchmarking, the independence of training and evaluation makes current MLLMs hard to further improve their capability under the guidance of evaluation results with a relatively low human cost. In this paper, we propose MLLM-DataEngine, a novel closed-loop system that bridges data generation, model training, and evaluation. Within each loop iteration, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results, then generate a proper incremental dataset for the next training iteration and enhance the model capability iteratively. Compared with previous data collection methods which are separate from the benchmarking, the data generated by MLLM-DataEngine shows better targeting, quality, and correctness. For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data within each incremental dataset based on the benchmarking results. For quality, we resort to GPT-4 to generate high-quality data with each given data type. For correctness, prompt design is critical for the data generation results. Rather than previous hand-crafted prompt, we propose an Interactive Prompt Optimization strategy, which optimizes the prompt with the multi-round interaction between human and GPT, and improve the correctness of generated data greatly. Through extensive experiments, we find our MLLM-DataEngine could boost the MLLM capability in a targeted and automatic manner, with only a few human participation. We hope it could be a general solution for the following MLLMs building. The MLLM-DataEngine has been open-sourced and is now available at https://github.com/opendatalab/MLLM-DataEngine.
Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI
Scientific discovery has long been constrained by human limitations in expertise, physical capability, and sleep cycles. The recent rise of AI scientists and automated laboratories has accelerated both the cognitive and operational aspects of research. However, key limitations persist: AI systems are often confined to virtual environments, while automated laboratories lack the flexibility and autonomy to adaptively test new hypotheses in the physical world. Recent advances in embodied AI, such as generalist robot foundation models, diffusion-based action policies, fine-grained manipulation learning, and sim-to-real transfer, highlight the promise of integrating cognitive and embodied intelligence. This convergence opens the door to closed-loop systems that support iterative, autonomous experimentation and the possibility of serendipitous discovery. In this position paper, we propose the paradigm of Intelligent Science Laboratories (ISLs): a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence. ISLs unify foundation models for scientific reasoning, agent-based workflow orchestration, and embodied agents for robust physical experimentation. We argue that such systems are essential for overcoming the current limitations of scientific discovery and for realizing the full transformative potential of AI-driven science.
Factuality Matters: When Image Generation and Editing Meet Structured Visuals
While modern visual generation models excel at creating aesthetically pleasing natural images, they struggle with producing or editing structured visuals like charts, diagrams, and mathematical figures, which demand composition planning, text rendering, and multimodal reasoning for factual fidelity. To address this, we present the first comprehensive, systematic investigation of this domain, encompassing data construction, model training, and an evaluation benchmark. First, we construct a large-scale dataset of 1.3 million high-quality structured image pairs derived from executable drawing programs and augmented with chain-of-thought reasoning annotations. Building on it, we train a unified model that integrates a VLM with FLUX.1 Kontext via a lightweight connector for enhanced multimodal understanding. A three-stage training curriculum enables progressive feature alignment, knowledge infusion, and reasoning-augmented generation, further boosted by an external reasoner at inference time. Finally, we introduce StructBench, a novel benchmark for generation and editing with over 1,700 challenging instances, and an accompanying evaluation metric, StructScore, which employs a multi-round Q\&A protocol to assess fine-grained factual accuracy. Evaluations of 15 models reveal that even leading closed-source systems remain far from satisfactory. Our model attains strong editing performance, and inference-time reasoning yields consistent gains across diverse architectures. By releasing the dataset, model, and benchmark, we aim to advance unified multimodal foundations for structured visuals.
Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction
We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.
SERA: Soft-Verified Efficient Repository Agents
Open-weight coding agents should hold a fundamental advantage over closed-source systems: they can be specialized to private codebases, encoding repository-specific information directly in their weights. Yet the cost and complexity of training has kept this advantage theoretical. We show it is now practical. We present Soft-Verified Efficient Repository Agents (SERA), an efficient method for training coding agents that enables the rapid and cheap creation of agents specialized to private codebases. Using only supervised finetuning (SFT), SERA achieves state-of-the-art results among fully open-source (open data, method, code) models while matching the performance of frontier open-weight models like Devstral-Small-2. Creating SERA models is 26x cheaper than reinforcement learning and 57x cheaper than previous synthetic data methods to reach equivalent performance. Our method, Soft Verified Generation (SVG), generates thousands of trajectories from a single code repository. Combined with cost-efficiency, this enables specialization to private codebases. Beyond repository specialization, we apply SVG to a larger corpus of codebases, generating over 200,000 synthetic trajectories. We use this dataset to provide detailed analysis of scaling laws, ablations, and confounding factors for training coding agents. Overall, we believe our work will greatly accelerate research on open coding agents and showcase the advantage of open-source models that can specialize to private codebases. We release SERA as the first model in Ai2's Open Coding Agents series, along with all our code, data, and Claude Code integration to support the research community.
Unified Thinker: A General Reasoning Modular Core for Image Generation
Despite impressive progress in high-fidelity image synthesis, generative models still struggle with logic-intensive instruction following, exposing a persistent reasoning--execution gap. Meanwhile, closed-source systems (e.g., Nano Banana) have demonstrated strong reasoning-driven image generation, highlighting a substantial gap to current open-source models. We argue that closing this gap requires not merely better visual generators, but executable reasoning: decomposing high-level intents into grounded, verifiable plans that directly steer the generative process. To this end, we propose Unified Thinker, a task-agnostic reasoning architecture for general image generation, designed as a unified planning core that can plug into diverse generators and workflows. Unified Thinker decouples a dedicated Thinker from the image Generator, enabling modular upgrades of reasoning without retraining the entire generative model. We further introduce a two-stage training paradigm: we first build a structured planning interface for the Thinker, then apply reinforcement learning to ground its policy in pixel-level feedback, encouraging plans that optimize visual correctness over textual plausibility. Extensive experiments on text-to-image generation and image editing show that Unified Thinker substantially improves image reasoning and generation quality.
OASim: an Open and Adaptive Simulator based on Neural Rendering for Autonomous Driving
With deep learning and computer vision technology development, autonomous driving provides new solutions to improve traffic safety and efficiency. The importance of building high-quality datasets is self-evident, especially with the rise of end-to-end autonomous driving algorithms in recent years. Data plays a core role in the algorithm closed-loop system. However, collecting real-world data is expensive, time-consuming, and unsafe. With the development of implicit rendering technology and in-depth research on using generative models to produce data at scale, we propose OASim, an open and adaptive simulator and autonomous driving data generator based on implicit neural rendering. It has the following characteristics: (1) High-quality scene reconstruction through neural implicit surface reconstruction technology. (2) Trajectory editing of the ego vehicle and participating vehicles. (3) Rich vehicle model library that can be freely selected and inserted into the scene. (4) Rich sensors model library where you can select specified sensors to generate data. (5) A highly customizable data generation system can generate data according to user needs. We demonstrate the high quality and fidelity of the generated data through perception performance evaluation on the Carla simulator and real-world data acquisition. Code is available at https://github.com/PJLab-ADG/OASim.
Learning Control-Oriented Dynamical Structure from Data
Even for known nonlinear dynamical systems, feedback controller synthesis is a difficult problem that often requires leveraging the particular structure of the dynamics to induce a stable closed-loop system. For general nonlinear models, including those fit to data, there may not be enough known structure to reliably synthesize a stabilizing feedback controller. In this paper, we discuss a state-dependent nonlinear tracking controller formulation based on a state-dependent Riccati equation for general nonlinear control-affine systems. This formulation depends on a nonlinear factorization of the system of vector fields defining the control-affine dynamics, which always exists under mild smoothness assumptions. We propose a method for learning this factorization from a finite set of data. On a variety of simulated nonlinear dynamical systems, we empirically demonstrate the efficacy of learned versions of this controller in stable trajectory tracking. Alongside our learning method, we evaluate recent ideas in jointly learning a controller and stabilizability certificate for known dynamical systems; we show experimentally that such methods can be frail in comparison.
Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model Collaboration Paradigm for Small Language Models
Natural Language to SQL (NL2SQL) has seen significant advancements with large language models (LLMs). However, these models often depend on closed-source systems and high computational resources, posing challenges in data privacy and deployment. In contrast, small language models (SLMs) struggle with NL2SQL tasks, exhibiting poor performance and incompatibility with existing frameworks. To address these issues, we introduce Feather-SQL, a new lightweight framework tailored for SLMs. Feather-SQL improves SQL executability and accuracy through 1) schema pruning and linking, 2) multi-path and multi-candidate generation. Additionally, we introduce the 1+1 Model Collaboration Paradigm, which pairs a strong general-purpose chat model with a fine-tuned SQL specialist, combining strong analytical reasoning with high-precision SQL generation. Experimental results on BIRD demonstrate that Feather-SQL improves NL2SQL performance on SLMs, with around 10% boost for models without fine-tuning. The proposed paradigm raises the accuracy ceiling of SLMs to 54.76%, highlighting its effectiveness.
Enhancing Safety and Robustness of Vision-Based Controllers via Reachability Analysis
Autonomous systems, such as self-driving cars and drones, have made significant strides in recent years by leveraging visual inputs and machine learning for decision-making and control. Despite their impressive performance, these vision-based controllers can make erroneous predictions when faced with novel or out-of-distribution inputs. Such errors can cascade into catastrophic system failures and compromise system safety. In this work, we compute Neural Reachable Tubes, which act as parameterized approximations of Backward Reachable Tubes to stress-test the vision-based controllers and mine their failure modes. The identified failures are then used to enhance the system safety through both offline and online methods. The online approach involves training a classifier as a run-time failure monitor to detect closed-loop, system-level failures, subsequently triggering a fallback controller that robustly handles these detected failures to preserve system safety. For the offline approach, we improve the original controller via incremental training using a carefully augmented failure dataset, resulting in a more robust controller that is resistant to the known failure modes. In either approach, the system is safeguarded against shortcomings that transcend the vision-based controller and pertain to the closed-loop safety of the overall system. We validate the proposed approaches on an autonomous aircraft taxiing task that involves using a vision-based controller to guide the aircraft towards the centerline of the runway. Our results show the efficacy of the proposed algorithms in identifying and handling system-level failures, outperforming methods that rely on controller prediction error or uncertainty quantification for identifying system failures.
Drive Like a Human: Rethinking Autonomous Driving with Large Language Models
In this paper, we explore the potential of using a large language model (LLM) to understand the driving environment in a human-like manner and analyze its ability to reason, interpret, and memorize when facing complex scenarios. We argue that traditional optimization-based and modular autonomous driving (AD) systems face inherent performance limitations when dealing with long-tail corner cases. To address this problem, we propose that an ideal AD system should drive like a human, accumulating experience through continuous driving and using common sense to solve problems. To achieve this goal, we identify three key abilities necessary for an AD system: reasoning, interpretation, and memorization. We demonstrate the feasibility of employing an LLM in driving scenarios by building a closed-loop system to showcase its comprehension and environment-interaction abilities. Our extensive experiments show that the LLM exhibits the impressive ability to reason and solve long-tailed cases, providing valuable insights for the development of human-like autonomous driving. The related code are available at https://github.com/PJLab-ADG/DriveLikeAHuman .
A Survey of Scientific Large Language Models: From Data Foundations to Agent Frontiers
Scientific Large Language Models (Sci-LLMs) are transforming how knowledge is represented, integrated, and applied in scientific research, yet their progress is shaped by the complex nature of scientific data. This survey presents a comprehensive, data-centric synthesis that reframes the development of Sci-LLMs as a co-evolution between models and their underlying data substrate. We formulate a unified taxonomy of scientific data and a hierarchical model of scientific knowledge, emphasizing the multimodal, cross-scale, and domain-specific challenges that differentiate scientific corpora from general natural language processing datasets. We systematically review recent Sci-LLMs, from general-purpose foundations to specialized models across diverse scientific disciplines, alongside an extensive analysis of over 270 pre-/post-training datasets, showing why Sci-LLMs pose distinct demands -- heterogeneous, multi-scale, uncertainty-laden corpora that require representations preserving domain invariance and enabling cross-modal reasoning. On evaluation, we examine over 190 benchmark datasets and trace a shift from static exams toward process- and discovery-oriented assessments with advanced evaluation protocols. These data-centric analyses highlight persistent issues in scientific data development and discuss emerging solutions involving semi-automated annotation pipelines and expert validation. Finally, we outline a paradigm shift toward closed-loop systems where autonomous agents based on Sci-LLMs actively experiment, validate, and contribute to a living, evolving knowledge base. Collectively, this work provides a roadmap for building trustworthy, continually evolving artificial intelligence (AI) systems that function as a true partner in accelerating scientific discovery.
Generating High-Quality Datasets for Code Editing via Open-Source Language Models
Code editing plays a vital role in software engineering, requiring developers to adjust existing code according to natural language instructions while keeping functionality intact and avoiding unnecessary modifications. However, commit-based datasets commonly used for this task are often noisy, lack diversity, and fail to reflect the style of real-world edit instructions. To address this, we introduce CanItEdit, an open-source pipeline that leverages multiple LLMs to synthesize realistic code-edit triplets. The pipeline produces both concise "lazy" instructions and more detailed "descriptive" ones, and applies filtering based on diffs and topics to guarantee data quality and variety. Using this process, we construct OCEDataFT, a curated dataset of 20K samples. Fine-tuning three advanced base models on OCEDataFT leads to significant performance boosts on the CanItEdit benchmark, with relative pass@1 improvements ranging from 4.50% to 20.79%. Notably, the resulting models achieve performance close to closed-source systems, narrowing the gap to GPT-4 to just 3.54%, without relying on proprietary resources or manual annotation.
ManuSearch: Democratizing Deep Search in Large Language Models with a Transparent and Open Multi-Agent Framework
Recent advances in web-augmented large language models (LLMs) have exhibited strong performance in complex reasoning tasks, yet these capabilities are mostly locked in proprietary systems with opaque architectures. In this work, we propose ManuSearch, a transparent and modular multi-agent framework designed to democratize deep search for LLMs. ManuSearch decomposes the search and reasoning process into three collaborative agents: (1) a solution planning agent that iteratively formulates sub-queries, (2) an Internet search agent that retrieves relevant documents via real-time web search, and (3) a structured webpage reading agent that extracts key evidence from raw web content. To rigorously evaluate deep reasoning abilities, we introduce ORION, a challenging benchmark focused on open-web reasoning over long-tail entities, covering both English and Chinese. Experimental results show that ManuSearch substantially outperforms prior open-source baselines and even surpasses leading closed-source systems. Our work paves the way for reproducible, extensible research in open deep search systems. We release the data and code in https://github.com/RUCAIBox/ManuSearch
Quantum Thermalization via Travelling Waves
Isolated quantum many-body systems which thermalize under their own dynamics are expected to act as their own thermal baths, thereby bringing their local subsystems to thermal equilibrium. Here we show that the infinite-dimensional limit of a quantum lattice model, as described by Dynamical Mean-Field theory (DMFT), provides a natural framework to understand this self-consistent thermalization process. Using the Fermi-Hubbard model as working example, we demonstrate that the emergence of a self-consistent bath thermalising the system is characterized by a sharp thermalization front, moving balistically and separating the initial condition from the long-time thermal fixed point. We characterize the full DMFT dynamics through an effective temperature for which we derive a travelling-wave equation of the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) type. This equation allows to predict the asymptotic shape of the front and its velocity, which match perfectly the full DMFT numerics. Our results provide a new angle to understand the onset of quantum thermalisation in closed isolated systems.
GenRecal: Generation after Recalibration from Large to Small Vision-Language Models
Recent advancements in vision-language models (VLMs) have leveraged large language models (LLMs) to achieve performance on par with closed-source systems like GPT-4V. However, deploying these models in real-world scenarios, particularly on resource-constrained devices, remains challenging due to their substantial computational demands. This has spurred interest in distilling knowledge from large VLMs into smaller, more efficient counterparts. A key challenge arises here from the diversity of VLM architectures, which are built on different LLMs and employ varying token types-differing in vocabulary size, token splits, and token index ordering. To address this challenge of limitation to a specific VLM type, we present Generation after Recalibration (GenRecal), a novel, general-purpose distillation framework for VLMs. GenRecal incorporates a Recalibrator that aligns and adapts feature representations between heterogeneous VLMs, enabling effective knowledge transfer across different types of VLMs. Through extensive experiments on multiple challenging benchmarks, we demonstrate that GenRecal significantly improves baseline performances, eventually outperforming large-scale open- and closed-source VLMs.
Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
IndicVisionBench: Benchmarking Cultural and Multilingual Understanding in VLMs
Vision-language models (VLMs) have demonstrated impressive generalization across multimodal tasks, yet most evaluation benchmarks remain Western-centric, leaving open questions about their performance in culturally diverse and multilingual settings. To address this gap, we introduce IndicVisionBench, the first large-scale benchmark centered on the Indian subcontinent. Covering English and 10 Indian languages, our benchmark spans 3 multimodal tasks, including Optical Character Recognition (OCR), Multimodal Machine Translation (MMT), and Visual Question Answering (VQA), covering 6 kinds of question types. Our final benchmark consists of a total of ~5K images and 37K+ QA pairs across 13 culturally grounded topics. In addition, we release a paired parallel corpus of annotations across 10 Indic languages, creating a unique resource for analyzing cultural and linguistic biases in VLMs. We evaluate a broad spectrum of 8 models, from proprietary closed-source systems to open-weights medium and large-scale models. Our experiments reveal substantial performance gaps, underscoring the limitations of current VLMs in culturally diverse contexts. By centering cultural diversity and multilinguality, IndicVisionBench establishes a reproducible evaluation framework that paves the way for more inclusive multimodal research.
NonverbalTTS: A Public English Corpus of Text-Aligned Nonverbal Vocalizations with Emotion Annotations for Text-to-Speech
Current expressive speech synthesis models are constrained by the limited availability of open-source datasets containing diverse nonverbal vocalizations (NVs). In this work, we introduce NonverbalTTS (NVTTS), a 17-hour open-access dataset annotated with 10 types of NVs (e.g., laughter, coughs) and 8 emotional categories. The dataset is derived from popular sources, VoxCeleb and Expresso, using automated detection followed by human validation. We propose a comprehensive pipeline that integrates automatic speech recognition (ASR), NV tagging, emotion classification, and a fusion algorithm to merge transcriptions from multiple annotators. Fine-tuning open-source text-to-speech (TTS) models on the NVTTS dataset achieves parity with closed-source systems such as CosyVoice2, as measured by both human evaluation and automatic metrics, including speaker similarity and NV fidelity. By releasing NVTTS and its accompanying annotation guidelines, we address a key bottleneck in expressive TTS research. The dataset is available at https://huggingface.co/datasets/deepvk/NonverbalTTS.
GraFIT: A toolbox for fast and accurate frequency response identification in Gravitational Wave Detectors
Frequency response function (FRF) measurements are widely used in Gravitational Wave (GW) detectors, e.g., for the design of controllers, calibrating signals and diagnostic problems with system dynamics. The aim of this paper is to present GraFIT: a toolbox that enables fast, inexpensive, and accurate identification of FRF measurements for GW detectors compared to the commonly used approaches, including common spectral analysis techniques. The toolbox consists of a single function to estimate the frequency response function for both open-loop and closed-loop systems and for arbitrary input and output dimensions. The toolbox is validated on two experimental case studies of the Virgo detector, illustrating more than a factor 3 reduction in standard deviation of the estimate for the same measurement times, and comparable standard deviations with up to 10 times less data for the new method with respect to the currently implemented Spectral Analysis method.
Unfolding the Headline: Iterative Self-Questioning for News Retrieval and Timeline Summarization
In the fast-changing realm of information, the capacity to construct coherent timelines from extensive event-related content has become increasingly significant and challenging. The complexity arises in aggregating related documents to build a meaningful event graph around a central topic. This paper proposes CHRONOS - Causal Headline Retrieval for Open-domain News Timeline SummarizatiOn via Iterative Self-Questioning, which offers a fresh perspective on the integration of Large Language Models (LLMs) to tackle the task of Timeline Summarization (TLS). By iteratively reflecting on how events are linked and posing new questions regarding a specific news topic to gather information online or from an offline knowledge base, LLMs produce and refresh chronological summaries based on documents retrieved in each round. Furthermore, we curate Open-TLS, a novel dataset of timelines on recent news topics authored by professional journalists to evaluate open-domain TLS where information overload makes it impossible to find comprehensive relevant documents from the web. Our experiments indicate that CHRONOS is not only adept at open-domain timeline summarization, but it also rivals the performance of existing state-of-the-art systems designed for closed-domain applications, where a related news corpus is provided for summarization.
How to Train Your LLM Web Agent: A Statistical Diagnosis
LLM-based web agents have recently made significant progress, but much of it has occurred in closed-source systems, widening the gap with open-source alternatives. Progress has been held back by two key challenges: first, a narrow focus on single-step tasks that overlooks the complexity of multi-step web interactions; and second, the high compute costs required to post-train LLM-based web agents. To address this, we present the first statistically grounded study on compute allocation for LLM web-agent post-training. Our approach uses a two-stage pipeline, training a Llama 3.1 8B student to imitate a Llama 3.3 70B teacher via supervised fine-tuning (SFT), followed by on-policy reinforcement learning. We find this process highly sensitive to hyperparameter choices, making exhaustive sweeps impractical. To spare others from expensive trial-and-error, we sample 1,370 configurations and use bootstrapping to estimate effective hyperparameters. Our results show that combining SFT with on-policy RL consistently outperforms either approach alone on both WorkArena and MiniWob++. Further, this strategy requires only 55% of the compute to match the peak performance of pure SFT on MiniWob++, effectively pushing the compute-performance Pareto frontier, and is the only strategy that can close the gap with closed-source models.
Afterburner: Reinforcement Learning Facilitates Self-Improving Code Efficiency Optimization
Large Language Models (LLMs) generate functionally correct solutions but often fall short in code efficiency, a critical bottleneck for real-world deployment. In this paper, we introduce a novel test-time iterative optimization framework to address this, employing a closed-loop system where LLMs iteratively refine code based on empirical performance feedback from an execution sandbox. We explore three training strategies: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Group Relative Policy Optimization~(GRPO). Experiments on our Venus dataset and the APPS benchmark show that SFT and DPO rapidly saturate in efficiency gains. In contrast, GRPO, using reinforcement learning (RL) with execution feedback, continuously optimizes code performance, significantly boosting both pass@1 (from 47% to 62%) and the likelihood of outperforming human submissions in efficiency (from 31% to 45%). Our work demonstrates effective test-time code efficiency improvement and critically reveals the power of RL in teaching LLMs to truly self-improve code efficiency.
ThetaEvolve: Test-time Learning on Open Problems
Recent advances in large language models (LLMs) have enabled breakthroughs in mathematical discovery, exemplified by AlphaEvolve, a closed-source system that evolves programs to improve bounds on open problems. However, it relies on ensembles of frontier LLMs to achieve new bounds and is a pure inference system that models cannot internalize the evolving strategies. We introduce ThetaEvolve, an open-source framework that simplifies and extends AlphaEvolve to efficiently scale both in-context learning and Reinforcement Learning (RL) at test time, allowing models to continually learn from their experiences in improving open optimization problems. ThetaEvolve features a single LLM, a large program database for enhanced exploration, batch sampling for higher throughput, lazy penalties to discourage stagnant outputs, and optional reward shaping for stable training signals, etc. ThetaEvolve is the first evolving framework that enable a small open-source model, like DeepSeek-R1-0528-Qwen3-8B, to achieve new best-known bounds on open problems (circle packing and first auto-correlation inequality) mentioned in AlphaEvolve. Besides, across two models and four open tasks, we find that ThetaEvolve with RL at test-time consistently outperforms inference-only baselines, and the model indeed learns evolving capabilities, as the RL-trained checkpoints demonstrate faster progress and better final performance on both trained target task and other unseen tasks. We release our code publicly: https://github.com/ypwang61/ThetaEvolve
Adaptive Deep Learning for Efficient Visual Pose Estimation aboard Ultra-low-power Nano-drones
Sub-10cm diameter nano-drones are gaining momentum thanks to their applicability in scenarios prevented to bigger flying drones, such as in narrow environments and close to humans. However, their tiny form factor also brings their major drawback: ultra-constrained memory and processors for the onboard execution of their perception pipelines. Therefore, lightweight deep learning-based approaches are becoming increasingly popular, stressing how computational efficiency and energy-saving are paramount as they can make the difference between a fully working closed-loop system and a failing one. In this work, to maximize the exploitation of the ultra-limited resources aboard nano-drones, we present a novel adaptive deep learning-based mechanism for the efficient execution of a vision-based human pose estimation task. We leverage two State-of-the-Art (SoA) convolutional neural networks (CNNs) with different regression performance vs. computational costs trade-offs. By combining these CNNs with three novel adaptation strategies based on the output's temporal consistency and on auxiliary tasks to swap the CNN being executed proactively, we present six different systems. On a real-world dataset and the actual nano-drone hardware, our best-performing system, compared to executing only the bigger and most accurate SoA model, shows 28% latency reduction while keeping the same mean absolute error (MAE), 3% MAE reduction while being iso-latency, and the absolute peak performance, i.e., 6% better than SoA model.
Rapid Network Adaptation: Learning to Adapt Neural Networks Using Test-Time Feedback
We propose a method for adapting neural networks to distribution shifts at test-time. In contrast to training-time robustness mechanisms that attempt to anticipate and counter the shift, we create a closed-loop system and make use of a test-time feedback signal to adapt a network on the fly. We show that this loop can be effectively implemented using a learning-based function, which realizes an amortized optimizer for the network. This leads to an adaptation method, named Rapid Network Adaptation (RNA), that is notably more flexible and orders of magnitude faster than the baselines. Through a broad set of experiments using various adaptation signals and target tasks, we study the efficiency and flexibility of this method. We perform the evaluations using various datasets (Taskonomy, Replica, ScanNet, Hypersim, COCO, ImageNet), tasks (depth, optical flow, semantic segmentation, classification), and distribution shifts (Cross-datasets, 2D and 3D Common Corruptions) with promising results. We end with a discussion on general formulations for handling distribution shifts and our observations from comparing with similar approaches from other domains.
ASTRA: Automated Synthesis of agentic Trajectories and Reinforcement Arenas
Large language models (LLMs) are increasingly used as tool-augmented agents for multi-step decision making, yet training robust tool-using agents remains challenging. Existing methods still require manual intervention, depend on non-verifiable simulated environments, rely exclusively on either supervised fine-tuning (SFT) or reinforcement learning (RL), and struggle with stable long-horizon, multi-turn learning. To address these challenges, we introduce ASTRA, a fully automated end-to-end framework for training tool-augmented language model agents via scalable data synthesis and verifiable reinforcement learning. ASTRA integrates two complementary components. First, a pipeline that leverages the static topology of tool-call graphs synthesizes diverse, structurally grounded trajectories, instilling broad and transferable tool-use competence. Second, an environment synthesis framework that captures the rich, compositional topology of human semantic reasoning converts decomposed question-answer traces into independent, code-executable, and rule-verifiable environments, enabling deterministic multi-turn RL. Based on this method, we develop a unified training methodology that integrates SFT with online RL using trajectory-level rewards to balance task completion and interaction efficiency. Experiments on multiple agentic tool-use benchmarks demonstrate that ASTRA-trained models achieve state-of-the-art performance at comparable scales, approaching closed-source systems while preserving core reasoning ability. We release the full pipelines, environments, and trained models at https://github.com/LianjiaTech/astra.
FLUX-Reason-6M & PRISM-Bench: A Million-Scale Text-to-Image Reasoning Dataset and Comprehensive Benchmark
The advancement of open-source text-to-image (T2I) models has been hindered by the absence of large-scale, reasoning-focused datasets and comprehensive evaluation benchmarks, resulting in a performance gap compared to leading closed-source systems. To address this challenge, We introduce FLUX-Reason-6M and PRISM-Bench (Precise and Robust Image Synthesis Measurement Benchmark). FLUX-Reason-6M is a massive dataset consisting of 6 million high-quality FLUX-generated images and 20 million bilingual (English and Chinese) descriptions specifically designed to teach complex reasoning. The image are organized according to six key characteristics: Imagination, Entity, Text rendering, Style, Affection, and Composition, and design explicit Generation Chain-of-Thought (GCoT) to provide detailed breakdowns of image generation steps. The whole data curation takes 15,000 A100 GPU days, providing the community with a resource previously unattainable outside of large industrial labs. PRISM-Bench offers a novel evaluation standard with seven distinct tracks, including a formidable Long Text challenge using GCoT. Through carefully designed prompts, it utilizes advanced vision-language models for nuanced human-aligned assessment of prompt-image alignment and image aesthetics. Our extensive evaluation of 19 leading models on PRISM-Bench reveals critical performance gaps and highlights specific areas requiring improvement. Our dataset, benchmark, and evaluation code are released to catalyze the next wave of reasoning-oriented T2I generation. Project page: https://flux-reason-6m.github.io/ .
SkyReels-V3 Technique Report
Video generation serves as a cornerstone for building world models, where multimodal contextual inference stands as the defining test of capability. In this end, we present SkyReels-V3, a conditional video generation model, built upon a unified multimodal in-context learning framework with diffusion Transformers. SkyReels-V3 model supports three core generative paradigms within a single architecture: reference images-to-video synthesis, video-to-video extension and audio-guided video generation. (i) reference images-to-video model is designed to produce high-fidelity videos with strong subject identity preservation, temporal coherence, and narrative consistency. To enhance reference adherence and compositional stability, we design a comprehensive data processing pipeline that leverages cross frame pairing, image editing, and semantic rewriting, effectively mitigating copy paste artifacts. During training, an image video hybrid strategy combined with multi-resolution joint optimization is employed to improve generalization and robustness across diverse scenarios. (ii) video extension model integrates spatio-temporal consistency modeling with large-scale video understanding, enabling both seamless single-shot continuation and intelligent multi-shot switching with professional cinematographic patterns. (iii) Talking avatar model supports minute-level audio-conditioned video generation by training first-and-last frame insertion patterns and reconstructing key-frame inference paradigms. On the basis of ensuring visual quality, synchronization of audio and videos has been optimized. Extensive evaluations demonstrate that SkyReels-V3 achieves state-of-the-art or near state-of-the-art performance on key metrics including visual quality, instruction following, and specific aspect metrics, approaching leading closed-source systems. Github: https://github.com/SkyworkAI/SkyReels-V3.
Ovis-Image Technical Report
We introduce Ovis-Image, a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints. Built upon our previous Ovis-U1 framework, Ovis-Image integrates a diffusion-based visual decoder with the stronger Ovis 2.5 multimodal backbone, leveraging a text-centric training pipeline that combines large-scale pre-training with carefully tailored post-training refinements. Despite its compact architecture, Ovis-Image achieves text rendering performance on par with significantly larger open models such as Qwen-Image and approaches closed-source systems like Seedream and GPT4o. Crucially, the model remains deployable on a single high-end GPU with moderate memory, narrowing the gap between frontier-level text rendering and practical deployment. Our results indicate that combining a strong multimodal backbone with a carefully designed, text-focused training recipe is sufficient to achieve reliable bilingual text rendering without resorting to oversized or proprietary models.
DriveAgent-R1: Advancing VLM-based Autonomous Driving with Active Perception and Hybrid Thinking
The advent of Vision-Language Models (VLMs) has significantly advanced end-to-end autonomous driving, demonstrating powerful reasoning abilities for high-level behavior planning tasks. However, existing methods are often constrained by a passive perception paradigm, relying solely on text-based reasoning. This passivity restricts the model's capacity to actively seek crucial visual evidence when faced with uncertainty. To address this, we introduce DriveAgent-R1, the first autonomous driving agent capable of active perception for planning. In complex scenarios, DriveAgent-R1 proactively invokes tools to perform visual reasoning, firmly grounding its decisions in visual evidence, thereby enhancing both interpretability and reliability. Furthermore, we propose a hybrid thinking framework, inspired by human driver cognitive patterns, allowing the agent to adaptively switch between efficient text-only reasoning and robust tool-augmented visual reasoning based on scene complexity. This capability is cultivated through a three-stage progressive training strategy, featuring a core Cascaded Reinforcement Learning (Cascaded RL) phase. Extensive experiments on the Drive-Internal dataset, which is rich in long-tail scenarios, and the public nuScenes dataset show that, with only 3B parameters, DriveAgent-R1 achieves competitive performance comparable to top closed model systems such as GPT-5 and to human driving proficiency while remaining deployment-friendly, offering a proven path toward building more intelligent autonomous driving systems.
Panoptic Vision-Language Feature Fields
Recently, methods have been proposed for 3D open-vocabulary semantic segmentation. Such methods are able to segment scenes into arbitrary classes based on text descriptions provided during runtime. In this paper, we propose to the best of our knowledge the first algorithm for open-vocabulary panoptic segmentation in 3D scenes. Our algorithm, Panoptic Vision-Language Feature Fields (PVLFF), learns a semantic feature field of the scene by distilling vision-language features from a pretrained 2D model, and jointly fits an instance feature field through contrastive learning using 2D instance segments on input frames. Despite not being trained on the target classes, our method achieves panoptic segmentation performance similar to the state-of-the-art closed-set 3D systems on the HyperSim, ScanNet and Replica dataset and additionally outperforms current 3D open-vocabulary systems in terms of semantic segmentation. We ablate the components of our method to demonstrate the effectiveness of our model architecture. Our code will be available at https://github.com/ethz-asl/pvlff.
BoxMind: Closed-loop AI strategy optimization for elite boxing validated in the 2024 Olympics
Competitive sports require sophisticated tactical analysis, yet combat disciplines like boxing remain underdeveloped in AI-driven analytics due to the complexity of action dynamics and the lack of structured tactical representations. To address this, we present BoxMind, a closed-loop AI expert system validated in elite boxing competition. By defining atomic punch events with precise temporal boundaries and spatial and technical attributes, we parse match footage into 18 hierarchical technical-tactical indicators. We then propose a graph-based predictive model that fuses these explicit technical-tactical profiles with learnable, time-variant latent embeddings to capture the dynamics of boxer matchups. Modeling match outcome as a differentiable function of technical-tactical indicators, we turn winning probability gradients into executable tactical adjustments. Experiments show that the outcome prediction model achieves state-of-the-art performance, with 69.8% accuracy on BoxerGraph test set and 87.5% on Olympic matches. Using this predictive model as a foundation, the system generates strategic recommendations that demonstrate proficiency comparable to human experts. BoxMind is validated through a closed-loop deployment during the 2024 Paris Olympics, directly contributing to the Chinese National Team's historic achievement of three gold and two silver medals. BoxMind establishes a replicable paradigm for transforming unstructured video data into strategic intelligence, bridging the gap between computer vision and decision support in competitive sports.
Closed-Loop Visuomotor Control with Generative Expectation for Robotic Manipulation
Despite significant progress in robotics and embodied AI in recent years, deploying robots for long-horizon tasks remains a great challenge. Majority of prior arts adhere to an open-loop philosophy and lack real-time feedback, leading to error accumulation and undesirable robustness. A handful of approaches have endeavored to establish feedback mechanisms leveraging pixel-level differences or pre-trained visual representations, yet their efficacy and adaptability have been found to be constrained. Inspired by classic closed-loop control systems, we propose CLOVER, a closed-loop visuomotor control framework that incorporates feedback mechanisms to improve adaptive robotic control. CLOVER consists of a text-conditioned video diffusion model for generating visual plans as reference inputs, a measurable embedding space for accurate error quantification, and a feedback-driven controller that refines actions from feedback and initiates replans as needed. Our framework exhibits notable advancement in real-world robotic tasks and achieves state-of-the-art on CALVIN benchmark, improving by 8% over previous open-loop counterparts. Code and checkpoints are maintained at https://github.com/OpenDriveLab/CLOVER.
CLONE: Closed-Loop Whole-Body Humanoid Teleoperation for Long-Horizon Tasks
Humanoid teleoperation plays a vital role in demonstrating and collecting data for complex humanoid-scene interactions. However, current teleoperation systems face critical limitations: they decouple upper- and lower-body control to maintain stability, restricting natural coordination, and operate open-loop without real-time position feedback, leading to accumulated drift. The fundamental challenge is achieving precise, coordinated whole-body teleoperation over extended durations while maintaining accurate global positioning. Here we show that an MoE-based teleoperation system, CLONE, with closed-loop error correction enables unprecedented whole-body teleoperation fidelity, maintaining minimal positional drift over long-range trajectories using only head and hand tracking from an MR headset. Unlike previous methods that either sacrifice coordination for stability or suffer from unbounded drift, CLONE learns diverse motion skills while preventing tracking error accumulation through real-time feedback, enabling complex coordinated movements such as ``picking up objects from the ground.'' These results establish a new milestone for whole-body humanoid teleoperation for long-horizon humanoid-scene interaction tasks.
Experiments with Large Language Models on Retrieval-Augmented Generation for Closed-Source Simulation Software
Large Language Models (LLMs) are increasingly helpful in text generation, even writing code in programming languages based on user prompts written in natural language. They are even applied to generate simulation models for multibody systems from natural language. Research results suggest that LLMs surpass the mere replication of existing code examples, where some LLMs have been trained on an open-source multibody simulation code. However, for closed-source simulation software, such results are not to be expected as their ideas and concepts might differ from other publicly available ones. LLMs can hallucinate for knowledge-intensive tasks, such as model creation, which can lead to wrong responses. This is especially the case for the LLM unknown closed-source simulation software. The same applies to other internal knowledge kept private to protect intellectual property or data privacy. The Retrieval-Augmented Generation (RAG) approach might yield a solution for these knowledge-intensive tasks. This paper explores the application of RAG to closed-source simulation software and presents first experiments. After a brief introduction to LLMs, the RAG approach, and the simulation method applied by the close-source simulation software, several examples are provided to test LLMs' knowledge of the simulation software and the creation of simulation models using two RAG systems. The examples show promising results indicating the benefits of applying RAG systems to closed-source simulation software, helping to access their knowledge. Nevertheless, they also reveal gaps in the applied information and open questions for further research.
Online Matching: A Real-time Bandit System for Large-scale Recommendations
The last decade has witnessed many successes of deep learning-based models for industry-scale recommender systems. These models are typically trained offline in a batch manner. While being effective in capturing users' past interactions with recommendation platforms, batch learning suffers from long model-update latency and is vulnerable to system biases, making it hard to adapt to distribution shift and explore new items or user interests. Although online learning-based approaches (e.g., multi-armed bandits) have demonstrated promising theoretical results in tackling these challenges, their practical real-time implementation in large-scale recommender systems remains limited. First, the scalability of online approaches in servicing a massive online traffic while ensuring timely updates of bandit parameters poses a significant challenge. Additionally, exploring uncertainty in recommender systems can easily result in unfavorable user experience, highlighting the need for devising intricate strategies that effectively balance the trade-off between exploitation and exploration. In this paper, we introduce Online Matching: a scalable closed-loop bandit system learning from users' direct feedback on items in real time. We present a hybrid "offline + online" approach for constructing this system, accompanied by a comprehensive exposition of the end-to-end system architecture. We propose Diag-LinUCB -- a novel extension of the LinUCB algorithm -- to enable distributed updates of bandits parameter in a scalable and timely manner. We conduct live experiments in YouTube and show that Online Matching is able to enhance the capabilities of fresh content discovery and item exploration in the present platform.
RISE Controller Tuning and System Identification Through Machine Learning for Human Lower Limb Rehabilitation via Neuromuscular Electrical Stimulation
Neuromuscular electrical stimulation (NMES) has been effectively applied in many rehabilitation treatments of individuals with spinal cord injury (SCI). In this context, we introduce a novel, robust, and intelligent control-based methodology to closed-loop NMES systems. Our approach utilizes a robust control law to guarantee system stability and machine learning tools to optimize both the controller parameters and system identification. Regarding the latter, we introduce the use of past rehabilitation data to build more realistic data-driven identified models. Furthermore, we apply the proposed methodology for the rehabilitation of lower limbs using a control technique named the robust integral of the sign of the error (RISE), an offline improved genetic algorithm optimizer, and neural network models. Although in the literature, the RISE controller presented good results on healthy subjects, without any fine-tuning method, a trial and error approach would quickly lead to muscle fatigue for individuals with SCI. In this paper, for the first time, the RISE controller is evaluated with two paraplegic subjects in one stimulation session and with seven healthy individuals in at least two and at most five sessions. The results showed that the proposed approach provided a better control performance than empirical tuning, which can avoid premature fatigue on NMES-based clinical procedures.
NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems
This paper presents the Neural Network Verification (NNV) software tool, a set-based verification framework for deep neural networks (DNNs) and learning-enabled cyber-physical systems (CPS). The crux of NNV is a collection of reachability algorithms that make use of a variety of set representations, such as polyhedra, star sets, zonotopes, and abstract-domain representations. NNV supports both exact (sound and complete) and over-approximate (sound) reachability algorithms for verifying safety and robustness properties of feed-forward neural networks (FFNNs) with various activation functions. For learning-enabled CPS, such as closed-loop control systems incorporating neural networks, NNV provides exact and over-approximate reachability analysis schemes for linear plant models and FFNN controllers with piecewise-linear activation functions, such as ReLUs. For similar neural network control systems (NNCS) that instead have nonlinear plant models, NNV supports over-approximate analysis by combining the star set analysis used for FFNN controllers with zonotope-based analysis for nonlinear plant dynamics building on CORA. We evaluate NNV using two real-world case studies: the first is safety verification of ACAS Xu networks and the second deals with the safety verification of a deep learning-based adaptive cruise control system.
Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our \method consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are coming soon.
The Portiloop: a deep learning-based open science tool for closed-loop brain stimulation
Closed-loop brain stimulation refers to capturing neurophysiological measures such as electroencephalography (EEG), quickly identifying neural events of interest, and producing auditory, magnetic or electrical stimulation so as to interact with brain processes precisely. It is a promising new method for fundamental neuroscience and perhaps for clinical applications such as restoring degraded memory function; however, existing tools are expensive, cumbersome, and offer limited experimental flexibility. In this article, we propose the Portiloop, a deep learning-based, portable and low-cost closed-loop stimulation system able to target specific brain oscillations. We first document open-hardware implementations that can be constructed from commercially available components. We also provide a fast, lightweight neural network model and an exploration algorithm that automatically optimizes the model hyperparameters to the desired brain oscillation. Finally, we validate the technology on a challenging test case of real-time sleep spindle detection, with results comparable to off-line expert performance on the Massive Online Data Annotation spindle dataset (MODA; group consensus). Software and plans are available to the community as an open science initiative to encourage further development and advance closed-loop neuroscience research.
Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning
We propose Rec-R1, a general reinforcement learning framework that bridges large language models (LLMs) with recommendation systems through closed-loop optimization. Unlike prompting and supervised fine-tuning (SFT), Rec-R1 directly optimizes LLM generation using feedback from a fixed black-box recommendation model, without relying on synthetic SFT data from proprietary models such as GPT-4o. This avoids the substantial cost and effort required for data distillation. To verify the effectiveness of Rec-R1, we evaluate it on two representative tasks: product search and sequential recommendation. Experimental results demonstrate that Rec-R1 not only consistently outperforms prompting- and SFT-based methods, but also achieves significant gains over strong discriminative baselines, even when used with simple retrievers such as BM25. Moreover, Rec-R1 preserves the general-purpose capabilities of the LLM, unlike SFT, which often impairs instruction-following and reasoning. These findings suggest Rec-R1 as a promising foundation for continual task-specific adaptation without catastrophic forgetting.
Defect Spectrum: A Granular Look of Large-Scale Defect Datasets with Rich Semantics
Defect inspection is paramount within the closed-loop manufacturing system. However, existing datasets for defect inspection often lack precision and semantic granularity required for practical applications. In this paper, we introduce the Defect Spectrum, a comprehensive benchmark that offers precise, semantic-abundant, and large-scale annotations for a wide range of industrial defects. Building on four key industrial benchmarks, our dataset refines existing annotations and introduces rich semantic details, distinguishing multiple defect types within a single image. Furthermore, we introduce Defect-Gen, a two-stage diffusion-based generator designed to create high-quality and diverse defective images, even when working with limited datasets. The synthetic images generated by Defect-Gen significantly enhance the efficacy of defect inspection models. Overall, The Defect Spectrum dataset demonstrates its potential in defect inspection research, offering a solid platform for testing and refining advanced models.
Tracing LLM Reasoning Processes with Strategic Games: A Framework for Planning, Revision, and Resource-Constrained Decision Making
Large language models (LLMs) are increasingly used for tasks that require complex reasoning. Most benchmarks focus on final outcomes but overlook the intermediate reasoning steps - such as planning, revision, and decision making under resource constraints. We argue that measuring these internal processes is essential for understanding model behavior and improving reliability. We propose using strategic games as a natural evaluation environment: closed, rule-based systems with clear states, limited resources, and automatic feedback. We introduce a framework that evaluates LLMs along three core dimensions: planning, revision, and resource-constrained decision making. To operationalize this, we define metrics beyond win rate, including overcorrection risk rate, correction success rate, improvement slope, and over-budget ratio. In 4320 adversarial rounds across 12 leading models, ChatGPT-o3-mini achieves the top composite score, with a win rate of 74.7 percent, a correction success rate of 78.6 percent, and an improvement slope of 0.041. By contrast, Qwen-Plus, despite an overcorrection risk rate of 81.6 percent, wins only 25.6 percent of its matches - primarily due to excessive resource use. We also observe a negative correlation between overcorrection risk rate and correction success rate (Pearson r = -0.51, p = 0.093), suggesting that more frequent edits do not always improve outcomes. Our findings highlight the value of assessing not only what LLMs decide but how they arrive at those decisions
The Gradient of Generative AI Release: Methods and Considerations
As increasingly powerful generative AI systems are developed, the release method greatly varies. We propose a framework to assess six levels of access to generative AI systems: fully closed; gradual or staged access; hosted access; cloud-based or API access; downloadable access; and fully open. Each level, from fully closed to fully open, can be viewed as an option along a gradient. We outline key considerations across this gradient: release methods come with tradeoffs, especially around the tension between concentrating power and mitigating risks. Diverse and multidisciplinary perspectives are needed to examine and mitigate risk in generative AI systems from conception to deployment. We show trends in generative system release over time, noting closedness among large companies for powerful systems and openness among organizations founded on principles of openness. We also enumerate safety controls and guardrails for generative systems and necessary investments to improve future releases.
Playground v2.5: Three Insights towards Enhancing Aesthetic Quality in Text-to-Image Generation
In this work, we share three insights for achieving state-of-the-art aesthetic quality in text-to-image generative models. We focus on three critical aspects for model improvement: enhancing color and contrast, improving generation across multiple aspect ratios, and improving human-centric fine details. First, we delve into the significance of the noise schedule in training a diffusion model, demonstrating its profound impact on realism and visual fidelity. Second, we address the challenge of accommodating various aspect ratios in image generation, emphasizing the importance of preparing a balanced bucketed dataset. Lastly, we investigate the crucial role of aligning model outputs with human preferences, ensuring that generated images resonate with human perceptual expectations. Through extensive analysis and experiments, Playground v2.5 demonstrates state-of-the-art performance in terms of aesthetic quality under various conditions and aspect ratios, outperforming both widely-used open-source models like SDXL and Playground v2, and closed-source commercial systems such as DALLE 3 and Midjourney v5.2. Our model is open-source, and we hope the development of Playground v2.5 provides valuable guidelines for researchers aiming to elevate the aesthetic quality of diffusion-based image generation models.
SweRank: Software Issue Localization with Code Ranking
Software issue localization, the task of identifying the precise code locations (files, classes, or functions) relevant to a natural language issue description (e.g., bug report, feature request), is a critical yet time-consuming aspect of software development. While recent LLM-based agentic approaches demonstrate promise, they often incur significant latency and cost due to complex multi-step reasoning and relying on closed-source LLMs. Alternatively, traditional code ranking models, typically optimized for query-to-code or code-to-code retrieval, struggle with the verbose and failure-descriptive nature of issue localization queries. To bridge this gap, we introduce SweRank, an efficient and effective retrieve-and-rerank framework for software issue localization. To facilitate training, we construct SweLoc, a large-scale dataset curated from public GitHub repositories, featuring real-world issue descriptions paired with corresponding code modifications. Empirical results on SWE-Bench-Lite and LocBench show that SweRank achieves state-of-the-art performance, outperforming both prior ranking models and costly agent-based systems using closed-source LLMs like Claude-3.5. Further, we demonstrate SweLoc's utility in enhancing various existing retriever and reranker models for issue localization, establishing the dataset as a valuable resource for the community.
Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research
We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents. Unlike conventional LLM-based reasoning approaches, which rely solely on internal inference, Agentic Reasoning dynamically engages web search, code execution, and structured reasoning-context memory to solve complex problems requiring deep research and multi-step logical deduction. Our framework introduces the Mind Map agent, which constructs a structured knowledge graph to track logical relationships, improving deductive reasoning. Additionally, the integration of web-search and coding agents enables real-time retrieval and computational analysis, enhancing reasoning accuracy and decision-making. Evaluations on PhD-level scientific reasoning (GPQA) and domain-specific deep research tasks demonstrate that our approach significantly outperforms existing models, including leading retrieval-augmented generation (RAG) systems and closed-source LLMs. Moreover, our results indicate that agentic reasoning improves expert-level knowledge synthesis, test-time scalability, and structured problem-solving. The code is at: https://github.com/theworldofagents/Agentic-Reasoning.
CHIQ: Contextual History Enhancement for Improving Query Rewriting in Conversational Search
In this paper, we study how open-source large language models (LLMs) can be effectively deployed for improving query rewriting in conversational search, especially for ambiguous queries. We introduce CHIQ, a two-step method that leverages the capabilities of LLMs to resolve ambiguities in the conversation history before query rewriting. This approach contrasts with prior studies that predominantly use closed-source LLMs to directly generate search queries from conversation history. We demonstrate on five well-established benchmarks that CHIQ leads to state-of-the-art results across most settings, showing highly competitive performances with systems leveraging closed-source LLMs. Our study provides a first step towards leveraging open-source LLMs in conversational search, as a competitive alternative to the prevailing reliance on commercial LLMs. Data, models, and source code will be publicly available upon acceptance at https://github.com/fengranMark/CHIQ.
Agents4PLC: Automating Closed-loop PLC Code Generation and Verification in Industrial Control Systems using LLM-based Agents
In industrial control systems, the generation and verification of Programmable Logic Controller (PLC) code are critical for ensuring operational efficiency and safety. While Large Language Models (LLMs) have made strides in automated code generation, they often fall short in providing correctness guarantees and specialized support for PLC programming. To address these challenges, this paper introduces Agents4PLC, a novel framework that not only automates PLC code generation but also includes code-level verification through an LLM-based multi-agent system. We first establish a comprehensive benchmark for verifiable PLC code generation area, transitioning from natural language requirements to human-written-verified formal specifications and reference PLC code. We further enhance our `agents' specifically for industrial control systems by incorporating Retrieval-Augmented Generation (RAG), advanced prompt engineering techniques, and Chain-of-Thought strategies. Evaluation against the benchmark demonstrates that Agents4PLC significantly outperforms previous methods, achieving superior results across a series of increasingly rigorous metrics. This research not only addresses the critical challenges in PLC programming but also highlights the potential of our framework to generate verifiable code applicable to real-world industrial applications.
MMPB: It's Time for Multi-Modal Personalization
Visual personalization is essential in user-facing AI systems such as smart homes and healthcare, where aligning model behavior with user-centric concepts is critical. However, recent large Vision-Language Models (VLMs), despite their broad applicability, remain underexplored in their ability to adapt to individual users. In this paper, we introduce MMPB, the first extensive benchmark for evaluating VLMs on personalization. MMPB comprises 10k image-query pairs and includes 111 personalizable concepts across four categories: humans, animals, objects, and characters, with the human category enriched with preference-grounded queries. We structure personalization into three main task types, each highlighting a different key property of VLMs. Using 23 widely used VLMs including both open- and closed-source models, we evaluate personalization performance via a three-stage protocol: concept injection, multi-turn dialogue, and personalized querying. Our findings indicate that most VLMs (including some closed-source models) struggle with personalization, particularly in maintaining consistency over dialogue, handling user preferences, and adapting to visual cues. Our analysis reveals that the challenges in VLM personalization (such as refusal behaviors and long-context forgetting) highlight substantial room for improvement. By identifying these limitations and offering a scalable benchmark, MMPB offers valuable insights and a solid foundation for future research toward truly personalized multi-modal AI. Project Page: aidaslab.github.io/MMPB
CircuitSense: A Hierarchical Circuit System Benchmark Bridging Visual Comprehension and Symbolic Reasoning in Engineering Design Process
Engineering design operates through hierarchical abstraction from system specifications to component implementations, requiring visual understanding coupled with mathematical reasoning at each level. While Multi-modal Large Language Models (MLLMs) excel at natural image tasks, their ability to extract mathematical models from technical diagrams remains unexplored. We present CircuitSense, a comprehensive benchmark evaluating circuit understanding across this hierarchy through 8,006+ problems spanning component-level schematics to system-level block diagrams. Our benchmark uniquely examines the complete engineering workflow: Perception, Analysis, and Design, with a particular emphasis on the critical but underexplored capability of deriving symbolic equations from visual inputs. We introduce a hierarchical synthetic generation pipeline consisting of a grid-based schematic generator and a block diagram generator with auto-derived symbolic equation labels. Comprehensive evaluation of six state-of-the-art MLLMs, including both closed-source and open-source models, reveals fundamental limitations in visual-to-mathematical reasoning. Closed-source models achieve over 85\% accuracy on perception tasks involving component recognition and topology identification, yet their performance on symbolic derivation and analytical reasoning falls below 19\%, exposing a critical gap between visual parsing and symbolic reasoning. Models with stronger symbolic reasoning capabilities consistently achieve higher design task accuracy, confirming the fundamental role of mathematical understanding in circuit synthesis and establishing symbolic reasoning as the key metric for engineering competence.
BooookScore: A systematic exploration of book-length summarization in the era of LLMs
Summarizing book-length documents (>100K tokens) that exceed the context window size of large language models (LLMs) requires first breaking the input document into smaller chunks and then prompting an LLM to merge, update, and compress chunk-level summaries. Despite the complexity and importance of this task, it has yet to be meaningfully studied due to the challenges of evaluation: existing book-length summarization datasets (e.g., BookSum) are in the pretraining data of most public LLMs, and existing evaluation methods struggle to capture errors made by modern LLM summarizers. In this paper, we present the first study of the coherence of LLM-based book-length summarizers implemented via two prompting workflows: (1) hierarchically merging chunk-level summaries, and (2) incrementally updating a running summary. We obtain 1193 fine-grained human annotations on GPT-4 generated summaries of 100 recently-published books and identify eight common types of coherence errors made by LLMs. Because human evaluation is expensive and time-consuming, we develop an automatic metric, BooookScore, that measures the proportion of sentences in a summary that do not contain any of the identified error types. BooookScore has high agreement with human annotations and allows us to systematically evaluate the impact of many other critical parameters (e.g., chunk size, base LLM) while saving $15K USD and 500 hours in human evaluation costs. We find that closed-source LLMs such as GPT-4 and Claude 2 produce summaries with higher BooookScore than those generated by open-source models. While LLaMA 2 falls behind other models, Mixtral achieves performance on par with GPT-3.5-Turbo. Incremental updating yields lower BooookScore but higher level of detail than hierarchical merging, a trade-off sometimes preferred by annotators.
HiCRISP: A Hierarchical Closed-Loop Robotic Intelligent Self-Correction Planner
The integration of Large Language Models (LLMs) into robotics has revolutionized human-robot interactions and autonomous task planning. However, these systems are often unable to self-correct during the task execution, which hinders their adaptability in dynamic real-world environments. To address this issue, we present a Hierarchical Closed-loop Robotic Intelligent Self-correction Planner (HiCRISP), an innovative framework that enables robots to correct errors within individual steps during the task execution. HiCRISP actively monitors and adapts the task execution process, addressing both high-level planning and low-level action errors. Extensive benchmark experiments, encompassing virtual and real-world scenarios, showcase HiCRISP's exceptional performance, positioning it as a promising solution for robotic task planning with LLMs.
MarsRL: Advancing Multi-Agent Reasoning System via Reinforcement Learning with Agentic Pipeline Parallelism
Recent progress in large language models (LLMs) has been propelled by reinforcement learning with verifiable rewards (RLVR) and test-time scaling. However, the limited output length of LLMs constrains the depth of reasoning attainable in a single inference process. Multi-agent reasoning systems offer a promising alternative by employing multiple agents including Solver, Verifier, and Corrector, to iteratively refine solutions. While effective in closed-source models like Gemini 2.5 Pro, they struggle to generalize to open-source models due to insufficient critic and correction capabilities. To address this, we propose MarsRL, a novel reinforcement learning framework with agentic pipeline parallelism, designed to jointly optimize all agents in the system. MarsRL introduces agent-specific reward mechanisms to mitigate reward noise and employs pipeline-inspired training to enhance efficiency in handling long trajectories. Applied to Qwen3-30B-A3B-Thinking-2507, MarsRL improves AIME2025 accuracy from 86.5% to 93.3% and BeyondAIME from 64.9% to 73.8%, even surpassing Qwen3-235B-A22B-Thinking-2507. These findings highlight the potential of MarsRL to advance multi-agent reasoning systems and broaden their applicability across diverse reasoning tasks.
BlenderGym: Benchmarking Foundational Model Systems for Graphics Editing
3D graphics editing is crucial in applications like movie production and game design, yet it remains a time-consuming process that demands highly specialized domain expertise. Automating this process is challenging because graphical editing requires performing a variety of tasks, each requiring distinct skill sets. Recently, vision-language models (VLMs) have emerged as a powerful framework for automating the editing process, but their development and evaluation are bottlenecked by the lack of a comprehensive benchmark that requires human-level perception and presents real-world editing complexity. In this work, we present BlenderGym, the first comprehensive VLM system benchmark for 3D graphics editing. BlenderGym evaluates VLM systems through code-based 3D reconstruction tasks. We evaluate closed- and open-source VLM systems and observe that even the state-of-the-art VLM system struggles with tasks relatively easy for human Blender users. Enabled by BlenderGym, we study how inference scaling techniques impact VLM's performance on graphics editing tasks. Notably, our findings reveal that the verifier used to guide the scaling of generation can itself be improved through inference scaling, complementing recent insights on inference scaling of LLM generation in coding and math tasks. We further show that inference compute is not uniformly effective and can be optimized by strategically distributing it between generation and verification.
UniSim: A Neural Closed-Loop Sensor Simulator
Rigorously testing autonomy systems is essential for making safe self-driving vehicles (SDV) a reality. It requires one to generate safety critical scenarios beyond what can be collected safely in the world, as many scenarios happen rarely on public roads. To accurately evaluate performance, we need to test the SDV on these scenarios in closed-loop, where the SDV and other actors interact with each other at each timestep. Previously recorded driving logs provide a rich resource to build these new scenarios from, but for closed loop evaluation, we need to modify the sensor data based on the new scene configuration and the SDV's decisions, as actors might be added or removed and the trajectories of existing actors and the SDV will differ from the original log. In this paper, we present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle and converts it into a realistic closed-loop multi-sensor simulation. UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene, and composites them together to simulate LiDAR and camera data at new viewpoints, with actors added or removed and at new placements. To better handle extrapolated views, we incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions. Our experiments show UniSim can simulate realistic sensor data with small domain gap on downstream tasks. With UniSim, we demonstrate closed-loop evaluation of an autonomy system on safety-critical scenarios as if it were in the real world.
Exploring the Equivalence of Closed-Set Generative and Real Data Augmentation in Image Classification
In this paper, we address a key scientific problem in machine learning: Given a training set for an image classification task, can we train a generative model on this dataset to enhance the classification performance? (i.e., closed-set generative data augmentation). We start by exploring the distinctions and similarities between real images and closed-set synthetic images generated by advanced generative models. Through extensive experiments, we offer systematic insights into the effective use of closed-set synthetic data for augmentation. Notably, we empirically determine the equivalent scale of synthetic images needed for augmentation. In addition, we also show quantitative equivalence between the real data augmentation and open-set generative augmentation (generative models trained using data beyond the given training set). While it aligns with the common intuition that real images are generally preferred, our empirical formulation also offers a guideline to quantify the increased scale of synthetic data augmentation required to achieve comparable image classification performance. Our results on natural and medical image datasets further illustrate how this effect varies with the baseline training set size and the amount of synthetic data incorporated.
Osiris: A Lightweight Open-Source Hallucination Detection System
Retrieval-Augmented Generation (RAG) systems have gained widespread adoption by application builders because they leverage sources of truth to enable Large Language Models (LLMs) to generate more factually sound responses. However, hallucinations, instances of LLM responses that are unfaithful to the provided context, often prevent these systems from being deployed in production environments. Current hallucination detection methods typically involve human evaluation or the use of closed-source models to review RAG system outputs for hallucinations. Both human evaluators and closed-source models suffer from scaling issues due to their high costs and slow inference speeds. In this work, we introduce a perturbed multi-hop QA dataset with induced hallucinations. Via supervised fine-tuning on our dataset, we achieve better recall with a 7B model than GPT-4o on the RAGTruth hallucination detection benchmark and offer competitive performance on precision and accuracy, all while using a fraction of the parameters. Code is released at our repository.
Reinforcement Learning Foundations for Deep Research Systems: A Survey
Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.
CLEA: Closed-Loop Embodied Agent for Enhancing Task Execution in Dynamic Environments
Large Language Models (LLMs) exhibit remarkable capabilities in the hierarchical decomposition of complex tasks through semantic reasoning. However, their application in embodied systems faces challenges in ensuring reliable execution of subtask sequences and achieving one-shot success in long-term task completion. To address these limitations in dynamic environments, we propose Closed-Loop Embodied Agent (CLEA) -- a novel architecture incorporating four specialized open-source LLMs with functional decoupling for closed-loop task management. The framework features two core innovations: (1) Interactive task planner that dynamically generates executable subtasks based on the environmental memory, and (2) Multimodal execution critic employing an evaluation framework to conduct a probabilistic assessment of action feasibility, triggering hierarchical re-planning mechanisms when environmental perturbations exceed preset thresholds. To validate CLEA's effectiveness, we conduct experiments in a real environment with manipulable objects, using two heterogeneous robots for object search, manipulation, and search-manipulation integration tasks. Across 12 task trials, CLEA outperforms the baseline model, achieving a 67.3% improvement in success rate and a 52.8% increase in task completion rate. These results demonstrate that CLEA significantly enhances the robustness of task planning and execution in dynamic environments.
Funnel control for passive infinite-dimensional systems
We consider funnel control for linear infinite-dimensional systems that are impedance passive, meaning that they satisfy an energy balance in which the stored energy equals the squared norm of the state and the supplied power is the inner product of input and output. For the analysis we employ the system node approach, which offers a unified framework for infinite-dimensional systems with boundary and distributed control and observation. The resulting closed-loop dynamics are governed by a nonlinear evolution equation; we establish its solvability and hence the applicability of funnel control to this class. The applicability is illustrated by an Euler-Bernoulli beam, which is studied in two distinct scenarios: once with boundary control and once with distributed control.
Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning
Efficient quantum compiling tactics greatly enhance the capability of quantum computers to execute complicated quantum algorithms. Due to its fundamental importance, a plethora of quantum compilers has been designed in past years. However, there are several caveats to current protocols, which are low optimality, high inference time, limited scalability, and lack of universality. To compensate for these defects, here we devise an efficient and practical quantum compiler assisted by advanced deep reinforcement learning (RL) techniques, i.e., data generation, deep Q-learning, and AQ* search. In this way, our protocol is compatible with various quantum machines and can be used to compile multi-qubit operators. We systematically evaluate the performance of our proposal in compiling quantum operators with both inverse-closed and inverse-free universal basis sets. In the task of single-qubit operator compiling, our proposal outperforms other RL-based quantum compilers in the measure of compiling sequence length and inference time. Meanwhile, the output solution is near-optimal, guaranteed by the Solovay-Kitaev theorem. Notably, for the inverse-free universal basis set, the achieved sequence length complexity is comparable with the inverse-based setting and dramatically advances previous methods. These empirical results contribute to improving the inverse-free Solovay-Kitaev theorem. In addition, for the first time, we demonstrate how to leverage RL-based quantum compilers to accomplish two-qubit operator compiling. The achieved results open an avenue for integrating RL with quantum compiling to unify efficiency and practicality and thus facilitate the exploration of quantum advantages.
HunyuanVideo: A Systematic Framework For Large Video Generative Models
Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at https://github.com/Tencent/HunyuanVideo.
Behind Closed Words: Creating and Investigating the forePLay Annotated Dataset for Polish Erotic Discourse
The surge in online content has created an urgent demand for robust detection systems, especially in non-English contexts where current tools demonstrate significant limitations. We present forePLay, a novel Polish language dataset for erotic content detection, featuring over 24k annotated sentences with a multidimensional taxonomy encompassing ambiguity, violence, and social unacceptability dimensions. Our comprehensive evaluation demonstrates that specialized Polish language models achieve superior performance compared to multilingual alternatives, with transformer-based architectures showing particular strength in handling imbalanced categories. The dataset and accompanying analysis establish essential frameworks for developing linguistically-aware content moderation systems, while highlighting critical considerations for extending such capabilities to morphologically complex languages.
SOP: A Scalable Online Post-Training System for Vision-Language-Action Models
Vision-language-action (VLA) models achieve strong generalization through large-scale pre-training, but real-world deployment requires expert-level task proficiency in addition to broad generality. Existing post-training approaches for VLA models are typically offline, single-robot, or task-specific, limiting effective on-policy adaptation and scalable learning from real-world interaction. We introduce a Scalable Online Post-training (SOP) system that enables online, distributed, multi-task post-training of generalist VLA models directly in the physical world. SOP tightly couples execution and learning through a closed-loop architecture in which a fleet of robots continuously streams on-policy experience and human intervention signals to a centralized cloud learner, and asynchronously receives updated policies. This design supports prompt on-policy correction, scales experience collection through parallel deployment, and preserves generality during adaptation. SOP is agnostic to the choice of post-training algorithm; we instantiate it with both interactive imitation learning (HG-DAgger) and reinforcement learning (RECAP). Across a range of real-world manipulation tasks including cloth folding, box assembly, and grocery restocking, we show that SOP substantially improves the performance of large pretrained VLA models while maintaining a single shared policy across tasks. Effective post-training can be achieved within hours of real-world interaction, and performance scales near-linearly with the number of robots in the fleet. These results suggest that tightly coupling online learning with fleet-scale deployment is instrumental to enabling efficient, reliable, and scalable post-training of generalist robot policies in the physical world.
FreeAskWorld: An Interactive and Closed-Loop Simulator for Human-Centric Embodied AI
As embodied intelligence emerges as a core frontier in artificial intelligence research, simulation platforms must evolve beyond low-level physical interactions to capture complex, human-centered social behaviors. We introduce FreeAskWorld, an interactive simulation framework that integrates large language models (LLMs) for high-level behavior planning and semantically grounded interaction, informed by theories of intention and social cognition. Our framework supports scalable, realistic human-agent simulations and includes a modular data generation pipeline tailored for diverse embodied tasks.To validate the framework, we extend the classic Vision-and-Language Navigation (VLN) task into a interaction enriched Direction Inquiry setting, wherein agents can actively seek and interpret navigational guidance. We present and publicly release FreeAskWorld, a large-scale benchmark dataset comprising reconstructed environments, six diverse task types, 16 core object categories, 63,429 annotated sample frames, and more than 17 hours of interaction data to support training and evaluation of embodied AI systems. We benchmark VLN models, and human participants under both open-loop and closed-loop settings. Experimental results demonstrate that models fine-tuned on FreeAskWorld outperform their original counterparts, achieving enhanced semantic understanding and interaction competency. These findings underscore the efficacy of socially grounded simulation frameworks in advancing embodied AI systems toward sophisticated high-level planning and more naturalistic human-agent interaction. Importantly, our work underscores that interaction itself serves as an additional information modality.
MI-Fuse: Label Fusion for Unsupervised Domain Adaptation with Closed-Source Large-Audio Language Model
Large audio-language models (LALMs) show strong zero-shot ability on speech tasks, suggesting promise for speech emotion recognition (SER). However, SER in real-world deployments often fails under domain mismatch, where source data are unavailable and powerful LALMs are accessible only through an API. We ask: given only unlabeled target-domain audio and an API-only LALM, can a student model be adapted to outperform the LALM in the target domain? To this end, we propose MI-Fuse, a denoised label fusion framework that supplements the LALM with a source-domain trained SER classifier as an auxiliary teacher. The framework draws multiple stochastic predictions from both teachers, weights their mean distributions by mutual-information-based uncertainty, and stabilizes training with an exponential moving average teacher. Experiments across three public emotion datasets and six cross-domain transfers show consistent gains, with the student surpassing the LALM and outperforming the strongest baseline by 3.9%. This approach strengthens emotion-aware speech systems without sharing source data, enabling realistic adaptation.
SEAL: Towards Safe Autonomous Driving via Skill-Enabled Adversary Learning for Closed-Loop Scenario Generation
Verification and validation of autonomous driving (AD) systems and components is of increasing importance, as such technology increases in real-world prevalence. Safety-critical scenario generation is a key approach to robustify AD policies through closed-loop training. However, existing approaches for scenario generation rely on simplistic objectives, resulting in overly-aggressive or non-reactive adversarial behaviors. To generate diverse adversarial yet realistic scenarios, we propose SEAL, a scenario perturbation approach which leverages learned objective functions and adversarial, human-like skills. SEAL-perturbed scenarios are more realistic than SOTA baselines, leading to improved ego task success across real-world, in-distribution, and out-of-distribution scenarios, of more than 20%. To facilitate future research, we release our code and tools: https://github.com/cmubig/SEAL
NeuroNCAP: Photorealistic Closed-loop Safety Testing for Autonomous Driving
We present a versatile NeRF-based simulator for testing autonomous driving (AD) software systems, designed with a focus on sensor-realistic closed-loop evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios inspired by the European New Car Assessment Programme (Euro NCAP). Our evaluation reveals that, while state-of-the-art end-to-end planners excel in nominal driving scenarios in an open-loop setting, they exhibit critical flaws when navigating our safety-critical scenarios in a closed-loop setting. This highlights the need for advancements in the safety and real-world usability of end-to-end planners. By publicly releasing our simulator and scenarios as an easy-to-run evaluation suite, we invite the research community to explore, refine, and validate their AD models in controlled, yet highly configurable and challenging sensor-realistic environments. Code and instructions can be found at https://github.com/atonderski/neuro-ncap
On stochastic MPC formulations with closed-loop guarantees: Analysis and a unifying framework
We investigate model predictive control (MPC) formulations for linear systems subject to i.i.d. stochastic disturbances with bounded support and chance constraints. Existing stochastic MPC formulations with closed-loop guarantees can be broadly classified in two separate frameworks: i) using robust techniques; ii) feasibility preserving algorithms. We investigate two particular MPC formulations representative for these two frameworks called robust-stochastic MPC and indirect feedback stochastic MPC. We provide a qualitative analysis, highlighting intrinsic limitations of both approaches in different edge cases. Then, we derive a unifying stochastic MPC framework that naturally includes these two formulations as limit cases. This qualitative analysis is complemented with numerical results, showcasing the advantages and limitations of each method.
SciEducator: Scientific Video Understanding and Educating via Deming-Cycle Multi-Agent System
Recent advancements in multimodal large language models (MLLMs) and video agent systems have significantly improved general video understanding. However, when applied to scientific video understanding and educating, a domain that demands external professional knowledge integration and rigorous step-wise reasoning, existing approaches often struggle. To bridge this gap, we propose SciEducator, the first iterative self-evolving multi-agent system for scientific video comprehension and education. Rooted in the classical Deming Cycle from management science, our design reformulates its Plan-Do-Study-Act philosophy into a self-evolving reasoning and feedback mechanism, which facilitates the interpretation of intricate scientific activities in videos. Moreover, SciEducator can produce multimodal educational content tailored to specific scientific processes, including textual instructions, visual guides, audio narrations, and interactive references. To support evaluation, we construct SciVBench, a benchmark consisting of 500 expert-verified and literature-grounded science QA pairs across five categories, covering physical, chemical, and everyday phenomena. Extensive experiments demonstrate that SciEducator substantially outperforms leading closed-source MLLMs (e.g., Gemini, GPT-4o) and state-of-the-art video agents on the benchmark, establishing a new paradigm for the community.
LMDrive: Closed-Loop End-to-End Driving with Large Language Models
Despite significant recent progress in the field of autonomous driving, modern methods still struggle and can incur serious accidents when encountering long-tail unforeseen events and challenging urban scenarios. On the one hand, large language models (LLM) have shown impressive reasoning capabilities that approach "Artificial General Intelligence". On the other hand, previous autonomous driving methods tend to rely on limited-format inputs (e.g. sensor data and navigation waypoints), restricting the vehicle's ability to understand language information and interact with humans. To this end, this paper introduces LMDrive, a novel language-guided, end-to-end, closed-loop autonomous driving framework. LMDrive uniquely processes and integrates multi-modal sensor data with natural language instructions, enabling interaction with humans and navigation software in realistic instructional settings. To facilitate further research in language-based closed-loop autonomous driving, we also publicly release the corresponding dataset which includes approximately 64K instruction-following data clips, and the LangAuto benchmark that tests the system's ability to handle complex instructions and challenging driving scenarios. Extensive closed-loop experiments are conducted to demonstrate LMDrive's effectiveness. To the best of our knowledge, we're the very first work to leverage LLMs for closed-loop end-to-end autonomous driving. Codes can be found at https://github.com/opendilab/LMDrive
Spectral and Energy Efficiency Tradeoff for Pinching-Antenna Systems
The joint transmit and pinching beamforming design for spectral efficiency (SE) and energy efficiency (EE) tradeoff in pinching-antenna systems (PASS) is proposed. Both PASS-enabled single- and multi-user communications are considered. In the single-user scenario, it is proved that the optimal pinching antenna (PA) positions are independent of the transmit beamforming. Based on this insight, a two-stage joint beamforming design is proposed. Specifically, in the first stage, an iterative closed-form refinement (ICR) scheme is proposed to align the phases of the received signals, based on which a PA placement framework is proposed. In the second stage, the closed-form solution for the optimal transmit beamformer is derived given the optimal PA positions. In the multi-user scenario, an alternating optimization (AO)-based joint beamforming design is proposed to balance the SE-EE performance while taking the quality-of-service (QoS) requirements into account. It is proved that the proposed AO-based algorithm is guaranteed to converge when no constraints are violated in PA placement subproblem. Numerical results demonstrate that: 1) the proposed algorithms significantly improve joint SE-EE performance with fast convergence speed; 2) the SE-EE tradeoff regime gap between PASS and conventional multi-antenna system widens as the number of PAs and service coverage increase.
Baichuan-M2: Scaling Medical Capability with Large Verifier System
As large language models (LLMs) advance in conversational and reasoning capabilities, their practical application in healthcare has become a critical research focus. However, there is a notable gap between the performance of medical LLMs on static benchmarks such as USMLE and their utility in real-world clinical decision-making. This discrepancy arises because traditional exams fail to capture the dynamic, interactive nature of medical consultations. To address this challenge, we introduce a novel dynamic verification framework that moves beyond static answer verifier, establishing a large-scale, high-fidelity interactive reinforcement learning system. Our framework comprises two key components: a Patient Simulator that creates realistic clinical environments using de-identified medical records, and a Clinical Rubrics Generator that dynamically produces multi-dimensional evaluation metrics. Building on this foundation, we develop Baichuan-M2, a 32B-parameter medical augmented reasoning model trained through a multi-stage reinforcement learning strategy with an improved Group Relative Policy Optimization (GRPO) algorithm. Evaluated on HealthBench, Baichuan-M2 outperforms all other open-source models and most advanced closed-source counterparts, achieving a score above 32 on the challenging HealthBench Hard benchmark-previously exceeded only by GPT-5. Our work demonstrates that robust dynamic verifier system is essential for aligning LLM capabilities with practical clinical applications, establishing a new Pareto front in the performance-parameter trade-off for medical AI deployment.
Recon-Act: A Self-Evolving Multi-Agent Browser-Use System via Web Reconnaissance, Tool Generation, and Task Execution
Recent years, multimodal models have made remarkable strides and pave the way for intelligent browser use agents. However, when solving tasks on real world webpages in multi-turn, long-horizon trajectories, current agents still suffer from disordered action sequencing and excessive trial and error during execution. This paper introduces Recon-Act, a self-evolving multi-agent framework grounded in Reconnaissance-Action behavioral paradigm. The system comprises a Reconnaissance Team and an Action Team: the former conducts comparative analysis and tool generation, while the latter handles intent decomposition, tool orchestration, and execution. By contrasting the erroneous trajectories with successful ones, the Reconnaissance Team infers remedies, and abstracts them into a unified notion of generalized tools, either expressed as hints or as rule-based codes, and register to the tool archive in real time. The Action Team reinference the process empowered with these targeting tools, thus establishing a closed-loop training pipeline of data-tools-action-feedback. Following the 6 level implementation roadmap proposed in this work, we have currently reached Level 3 (with limited human-in-the-loop intervention). Leveraging generalized tools obtained through reconnaissance, Recon-Act substantially improves adaptability to unseen websites and solvability on long-horizon tasks, and achieves state-of-the-art performance on the challenging VisualWebArena dataset.
mAIstro: an open-source multi-agentic system for automated end-to-end development of radiomics and deep learning models for medical imaging
Agentic systems built on large language models (LLMs) offer promising capabilities for automating complex workflows in healthcare AI. We introduce mAIstro, an open-source, autonomous multi-agentic framework for end-to-end development and deployment of medical AI models. The system orchestrates exploratory data analysis, radiomic feature extraction, image segmentation, classification, and regression through a natural language interface, requiring no coding from the user. Built on a modular architecture, mAIstro supports both open- and closed-source LLMs, and was evaluated using a large and diverse set of prompts across 16 open-source datasets, covering a wide range of imaging modalities, anatomical regions, and data types. The agents successfully executed all tasks, producing interpretable outputs and validated models. This work presents the first agentic framework capable of unifying data analysis, AI model development, and inference across varied healthcare applications, offering a reproducible and extensible foundation for clinical and research AI integration. The code is available at: https://github.com/eltzanis/mAIstro
AndroidLab: Training and Systematic Benchmarking of Android Autonomous Agents
Autonomous agents have become increasingly important for interacting with the real world. Android agents, in particular, have been recently a frequently-mentioned interaction method. However, existing studies for training and evaluating Android agents lack systematic research on both open-source and closed-source models. In this work, we propose AndroidLab as a systematic Android agent framework. It includes an operation environment with different modalities, action space, and a reproducible benchmark. It supports both large language models (LLMs) and multimodal models (LMMs) in the same action space. AndroidLab benchmark includes predefined Android virtual devices and 138 tasks across nine apps built on these devices. By using the AndroidLab environment, we develop an Android Instruction dataset and train six open-source LLMs and LMMs, lifting the average success rates from 4.59% to 21.50% for LLMs and from 1.93% to 13.28% for LMMs. AndroidLab is open-sourced and publicly available at https://github.com/THUDM/Android-Lab.
Beyond Release: Access Considerations for Generative AI Systems
Generative AI release decisions determine whether system components are made available, but release does not address many other elements that change how users and stakeholders are able to engage with a system. Beyond release, access to system components informs potential risks and benefits. Access refers to practical needs, infrastructurally, technically, and societally, in order to use available components in some way. We deconstruct access along three axes: resourcing, technical usability, and utility. Within each category, a set of variables per system component clarify tradeoffs. For example, resourcing requires access to computing infrastructure to serve model weights. We also compare the accessibility of four high performance language models, two open-weight and two closed-weight, showing similar considerations for all based instead on access variables. Access variables set the foundation for being able to scale or increase access to users; we examine the scale of access and how scale affects ability to manage and intervene on risks. This framework better encompasses the landscape and risk-benefit tradeoffs of system releases to inform system release decisions, research, and policy.
MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision
Multi-agent systems (MAS) leveraging the impressive capabilities of Large Language Models (LLMs) hold significant potential for tackling complex tasks. However, most current MAS depend on manually designed agent roles and communication protocols. These manual designs often fail to align with the underlying LLMs' strengths and struggle to adapt to novel tasks. Recent automatic MAS approaches attempt to mitigate these limitations but typically necessitate a validation set for tuning and yield static MAS designs lacking adaptability during inference. We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design. MAS-ZERO employs meta-level design to iteratively generate, evaluate, and refine MAS configurations tailored to each problem instance, without requiring a validation set. Critically, it enables dynamic agent composition and problem decomposition through meta-feedback on solvability and completeness. Experiments across math, graduate-level QA, and software engineering benchmarks, using both closed-source and open-source LLM backbones of varying sizes, demonstrate that MAS-ZERO outperforms both manual and automatic MAS baselines, achieving a 7.44% average accuracy improvement over the next strongest baseline while maintaining cost-efficiency. These findings underscore the promise of meta-level self-evolved design for creating effective and adaptive MAS.
Late lumping of transformation-based feedback laws for boundary control systems
Late-lumping feedback design for infinite-dimensional linear systems with unbounded input operators is considered. The proposed scheme is suitable for the approximation of backstepping and flatness-based designs and relies on a decomposition of the feedback into a bounded and an unbounded part. Approximation applies to the bounded part only, while the unbounded part is assumed to allow for an exact realization. Based on spectral results, the convergence of the closed-loop dynamics to the desired dynamics is established. By duality, similar results apply to the approximation of the observer output-injection gains for systems with boundary observation. The proposed design and approximation steps are demonstrated and illustrated based on a hyperbolic infinite-dimensional system.
Active Intelligence in Video Avatars via Closed-loop World Modeling
Current video avatar generation methods excel at identity preservation and motion alignment but lack genuine agency, they cannot autonomously pursue long-term goals through adaptive environmental interaction. We address this by introducing L-IVA (Long-horizon Interactive Visual Avatar), a task and benchmark for evaluating goal-directed planning in stochastic generative environments, and ORCA (Online Reasoning and Cognitive Architecture), the first framework enabling active intelligence in video avatars. ORCA embodies Internal World Model (IWM) capabilities through two key innovations: (1) a closed-loop OTAR cycle (Observe-Think-Act-Reflect) that maintains robust state tracking under generative uncertainty by continuously verifying predicted outcomes against actual generations, and (2) a hierarchical dual-system architecture where System 2 performs strategic reasoning with state prediction while System 1 translates abstract plans into precise, model-specific action captions. By formulating avatar control as a POMDP and implementing continuous belief updating with outcome verification, ORCA enables autonomous multi-step task completion in open-domain scenarios. Extensive experiments demonstrate that ORCA significantly outperforms open-loop and non-reflective baselines in task success rate and behavioral coherence, validating our IWM-inspired design for advancing video avatar intelligence from passive animation to active, goal-oriented behavior.
Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System
Vehicle-to-everything-aided autonomous driving (V2X-AD) has a huge potential to provide a safer driving solution. Despite extensive researches in transportation and communication to support V2X-AD, the actual utilization of these infrastructures and communication resources in enhancing driving performances remains largely unexplored. This highlights the necessity of collaborative autonomous driving: a machine learning approach that optimizes the information sharing strategy to improve the driving performance of each vehicle. This effort necessitates two key foundations: a platform capable of generating data to facilitate the training and testing of V2X-AD, and a comprehensive system that integrates full driving-related functionalities with mechanisms for information sharing. From the platform perspective, we present V2Xverse, a comprehensive simulation platform for collaborative autonomous driving. This platform provides a complete pipeline for collaborative driving. From the system perspective, we introduce CoDriving, a novel end-to-end collaborative driving system that properly integrates V2X communication over the entire autonomous pipeline, promoting driving with shared perceptual information. The core idea is a novel driving-oriented communication strategy. Leveraging this strategy, CoDriving improves driving performance while optimizing communication efficiency. We make comprehensive benchmarks with V2Xverse, analyzing both modular performance and closed-loop driving performance. Experimental results show that CoDriving: i) significantly improves the driving score by 62.49% and drastically reduces the pedestrian collision rate by 53.50% compared to the SOTA end-to-end driving method, and ii) achieves sustaining driving performance superiority over dynamic constraint communication conditions.
InterviewBot: Real-Time End-to-End Dialogue System to Interview Students for College Admission
We present the InterviewBot that dynamically integrates conversation history and customized topics into a coherent embedding space to conduct 10 mins hybrid-domain (open and closed) conversations with foreign students applying to U.S. colleges for assessing their academic and cultural readiness. To build a neural-based end-to-end dialogue model, 7,361 audio recordings of human-to-human interviews are automatically transcribed, where 440 are manually corrected for finetuning and evaluation. To overcome the input/output size limit of a transformer-based encoder-decoder model, two new methods are proposed, context attention and topic storing, allowing the model to make relevant and consistent interactions. Our final model is tested both statistically by comparing its responses to the interview data and dynamically by inviting professional interviewers and various students to interact with it in real-time, finding it highly satisfactory in fluency and context awareness.
Learning Lipschitz Feedback Policies from Expert Demonstrations: Closed-Loop Guarantees, Generalization and Robustness
In this work, we propose a framework to learn feedback control policies with guarantees on closed-loop generalization and adversarial robustness. These policies are learned directly from expert demonstrations, contained in a dataset of state-control input pairs, without any prior knowledge of the task and system model. We use a Lipschitz-constrained loss minimization scheme to learn feedback policies with certified closed-loop robustness, wherein the Lipschitz constraint serves as a mechanism to tune the generalization performance and robustness to adversarial disturbances. Our analysis exploits the Lipschitz property to obtain closed-loop guarantees on generalization and robustness of the learned policies. In particular, we derive a finite sample bound on the policy learning error and establish robust closed-loop stability under the learned control policy. We also derive bounds on the closed-loop regret with respect to the expert policy and the deterioration of closed-loop performance under bounded (adversarial) disturbances to the state measurements. Numerical results validate our analysis and demonstrate the effectiveness of our robust feedback policy learning framework. Finally, our results suggest the existence of a potential tradeoff between nominal closed-loop performance and adversarial robustness, and that improvements in nominal closed-loop performance can only be made at the expense of robustness to adversarial perturbations.
AmpleGCG: Learning a Universal and Transferable Generative Model of Adversarial Suffixes for Jailbreaking Both Open and Closed LLMs
As large language models (LLMs) become increasingly prevalent and integrated into autonomous systems, ensuring their safety is imperative. Despite significant strides toward safety alignment, recent work GCG~zou2023universal proposes a discrete token optimization algorithm and selects the single suffix with the lowest loss to successfully jailbreak aligned LLMs. In this work, we first discuss the drawbacks of solely picking the suffix with the lowest loss during GCG optimization for jailbreaking and uncover the missed successful suffixes during the intermediate steps. Moreover, we utilize those successful suffixes as training data to learn a generative model, named AmpleGCG, which captures the distribution of adversarial suffixes given a harmful query and enables the rapid generation of hundreds of suffixes for any harmful queries in seconds. AmpleGCG achieves near 100\% attack success rate (ASR) on two aligned LLMs (Llama-2-7B-chat and Vicuna-7B), surpassing two strongest attack baselines. More interestingly, AmpleGCG also transfers seamlessly to attack different models, including closed-source LLMs, achieving a 99\% ASR on the latest GPT-3.5. To summarize, our work amplifies the impact of GCG by training a generative model of adversarial suffixes that is universal to any harmful queries and transferable from attacking open-source LLMs to closed-source LLMs. In addition, it can generate 200 adversarial suffixes for one harmful query in only 4 seconds, rendering it more challenging to defend.
RES-Q: Evaluating Code-Editing Large Language Model Systems at the Repository Scale
The instruction-following ability of Large Language Models (LLMs) has cultivated a class of LLM-based systems capable of approaching complex tasks such as making edits to large code repositories. Due to the high sensitivity and unpredictability of LLM behavior in response to changes in prompting, robust evaluation tools are needed to drive future iteration of these systems. We propose RES-Q, a natural language instruction-based benchmark for evaluating Repository Editing Systems, which consists of 100 repository editing tasks derived from real GitHub commits. Given an edit instruction and a code repository, RES-Q evaluates an LLM system's ability to gather information and construct an edit that satisfies the criteria set by the instruction. We argue that evaluating LLMs in this way addresses issues with traditional benchmarks and provides a more holistic assessment of a model's abilities. We evaluate various state-of-the-art LLMs as language agents in a repository-editing system built on Qurrent OS, our language agent development software. Despite their 1% pass@1 performance difference on HumanEval, we find Claude Sonnet 3.5 outperforms GPT-4o by 12% pass@1 on RES-Q, indicating RES-Q's capacity to differentiate model capability as traditional benchmarks approach saturation. We further investigate token efficiency, performance relationships with existing benchmarks, and interesting disparities between closed and open-source LLMs. Code and dataset are available at https://github.com/Qurrent-AI/RES-Q.
FlashInfer-Bench: Building the Virtuous Cycle for AI-driven LLM Systems
Recent advances show that large language models (LLMs) can act as autonomous agents capable of generating GPU kernels, but integrating these AI-generated kernels into real-world inference systems remains challenging. FlashInfer-Bench addresses this gap by establishing a standardized, closed-loop framework that connects kernel generation, benchmarking, and deployment. At its core, FlashInfer Trace provides a unified schema describing kernel definitions, workloads, implementations, and evaluations, enabling consistent communication between agents and systems. Built on real serving traces, FlashInfer-Bench includes a curated dataset, a robust correctness- and performance-aware benchmarking framework, a public leaderboard to track LLM agents' GPU programming capabilities, and a dynamic substitution mechanism (apply()) that seamlessly injects the best-performing kernels into production LLM engines such as SGLang and vLLM. Using FlashInfer-Bench, we further evaluate the performance and limitations of LLM agents, compare the trade-offs among different GPU programming languages, and provide insights for future agent design. FlashInfer-Bench thus establishes a practical, reproducible pathway for continuously improving AI-generated kernels and deploying them into large-scale LLM inference.
Helmsman: Autonomous Synthesis of Federated Learning Systems via Multi-Agent Collaboration
Federated Learning (FL) offers a powerful paradigm for training models on decentralized data, but its promise is often undermined by the immense complexity of designing and deploying robust systems. The need to select, combine, and tune strategies for multifaceted challenges like data heterogeneity and system constraints has become a critical bottleneck, resulting in brittle, bespoke solutions. To address this, we introduce Helmsman, a novel multi-agent system that automates the end-to-end synthesis of federated learning systems from high-level user specifications. It emulates a principled research and development workflow through three collaborative phases: (1) interactive human-in-the-loop planning to formulate a sound research plan, (2) modular code generation by supervised agent teams, and (3) a closed-loop of autonomous evaluation and refinement in a sandboxed simulation environment. To facilitate rigorous evaluation, we also introduce AgentFL-Bench, a new benchmark comprising 16 diverse tasks designed to assess the system-level generation capabilities of agentic systems in FL. Extensive experiments demonstrate that our approach generates solutions competitive with, and often superior to, established hand-crafted baselines. Our work represents a significant step towards the automated engineering of complex decentralized AI systems.
A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models
Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.
Speaking in Words, Thinking in Logic: A Dual-Process Framework in QA Systems
Recent advances in large language models (LLMs) have significantly enhanced question-answering (QA) capabilities, particularly in open-domain contexts. However, in closed-domain scenarios such as education, healthcare, and law, users demand not only accurate answers but also transparent reasoning and explainable decision-making processes. While neural-symbolic (NeSy) frameworks have emerged as a promising solution, leveraging LLMs for natural language understanding and symbolic systems for formal reasoning, existing approaches often rely on large-scale models and exhibit inefficiencies in translating natural language into formal logic representations. To address these limitations, we introduce Text-JEPA (Text-based Joint-Embedding Predictive Architecture), a lightweight yet effective framework for converting natural language into first-order logic (NL2FOL). Drawing inspiration from dual-system cognitive theory, Text-JEPA emulates System 1 by efficiently generating logic representations, while the Z3 solver operates as System 2, enabling robust logical inference. To rigorously evaluate the NL2FOL-to-reasoning pipeline, we propose a comprehensive evaluation framework comprising three custom metrics: conversion score, reasoning score, and Spearman rho score, which collectively capture the quality of logical translation and its downstream impact on reasoning accuracy. Empirical results on domain-specific datasets demonstrate that Text-JEPA achieves competitive performance with significantly lower computational overhead compared to larger LLM-based systems. Our findings highlight the potential of structured, interpretable reasoning frameworks for building efficient and explainable QA systems in specialized domains.
Bench2Drive: Towards Multi-Ability Benchmarking of Closed-Loop End-To-End Autonomous Driving
In an era marked by the rapid scaling of foundation models, autonomous driving technologies are approaching a transformative threshold where end-to-end autonomous driving (E2E-AD) emerges due to its potential of scaling up in the data-driven manner. However, existing E2E-AD methods are mostly evaluated under the open-loop log-replay manner with L2 errors and collision rate as metrics (e.g., in nuScenes), which could not fully reflect the driving performance of algorithms as recently acknowledged in the community. For those E2E-AD methods evaluated under the closed-loop protocol, they are tested in fixed routes (e.g., Town05Long and Longest6 in CARLA) with the driving score as metrics, which is known for high variance due to the unsmoothed metric function and large randomness in the long route. Besides, these methods usually collect their own data for training, which makes algorithm-level fair comparison infeasible. To fulfill the paramount need of comprehensive, realistic, and fair testing environments for Full Self-Driving (FSD), we present Bench2Drive, the first benchmark for evaluating E2E-AD systems' multiple abilities in a closed-loop manner. Bench2Drive's official training data consists of 2 million fully annotated frames, collected from 13638 short clips uniformly distributed under 44 interactive scenarios (cut-in, overtaking, detour, etc), 23 weathers (sunny, foggy, rainy, etc), and 12 towns (urban, village, university, etc) in CARLA v2. Its evaluation protocol requires E2E-AD models to pass 44 interactive scenarios under different locations and weathers which sums up to 220 routes and thus provides a comprehensive and disentangled assessment about their driving capability under different situations. We implement state-of-the-art E2E-AD models and evaluate them in Bench2Drive, providing insights regarding current status and future directions.
Locally Regularized Neural Differential Equations: Some Black Boxes Were Meant to Remain Closed!
Implicit layer deep learning techniques, like Neural Differential Equations, have become an important modeling framework due to their ability to adapt to new problems automatically. Training a neural differential equation is effectively a search over a space of plausible dynamical systems. However, controlling the computational cost for these models is difficult since it relies on the number of steps the adaptive solver takes. Most prior works have used higher-order methods to reduce prediction timings while greatly increasing training time or reducing both training and prediction timings by relying on specific training algorithms, which are harder to use as a drop-in replacement due to strict requirements on automatic differentiation. In this manuscript, we use internal cost heuristics of adaptive differential equation solvers at stochastic time points to guide the training toward learning a dynamical system that is easier to integrate. We "close the black-box" and allow the use of our method with any adjoint technique for gradient calculations of the differential equation solution. We perform experimental studies to compare our method to global regularization to show that we attain similar performance numbers without compromising the flexibility of implementation on ordinary differential equations (ODEs) and stochastic differential equations (SDEs). We develop two sampling strategies to trade off between performance and training time. Our method reduces the number of function evaluations to 0.556-0.733x and accelerates predictions by 1.3-2x.
CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems
Automated systems that negotiate with humans have broad applications in pedagogy and conversational AI. To advance the development of practical negotiation systems, we present CaSiNo: a novel corpus of over a thousand negotiation dialogues in English. Participants take the role of campsite neighbors and negotiate for food, water, and firewood packages for their upcoming trip. Our design results in diverse and linguistically rich negotiations while maintaining a tractable, closed-domain environment. Inspired by the literature in human-human negotiations, we annotate persuasion strategies and perform correlation analysis to understand how the dialogue behaviors are associated with the negotiation performance. We further propose and evaluate a multi-task framework to recognize these strategies in a given utterance. We find that multi-task learning substantially improves the performance for all strategy labels, especially for the ones that are the most skewed. We release the dataset, annotations, and the code to propel future work in human-machine negotiations: https://github.com/kushalchawla/CaSiNo
PlanAgent: A Multi-modal Large Language Agent for Closed-loop Vehicle Motion Planning
Vehicle motion planning is an essential component of autonomous driving technology. Current rule-based vehicle motion planning methods perform satisfactorily in common scenarios but struggle to generalize to long-tailed situations. Meanwhile, learning-based methods have yet to achieve superior performance over rule-based approaches in large-scale closed-loop scenarios. To address these issues, we propose PlanAgent, the first mid-to-mid planning system based on a Multi-modal Large Language Model (MLLM). MLLM is used as a cognitive agent to introduce human-like knowledge, interpretability, and common-sense reasoning into the closed-loop planning. Specifically, PlanAgent leverages the power of MLLM through three core modules. First, an Environment Transformation module constructs a Bird's Eye View (BEV) map and a lane-graph-based textual description from the environment as inputs. Second, a Reasoning Engine module introduces a hierarchical chain-of-thought from scene understanding to lateral and longitudinal motion instructions, culminating in planner code generation. Last, a Reflection module is integrated to simulate and evaluate the generated planner for reducing MLLM's uncertainty. PlanAgent is endowed with the common-sense reasoning and generalization capability of MLLM, which empowers it to effectively tackle both common and complex long-tailed scenarios. Our proposed PlanAgent is evaluated on the large-scale and challenging nuPlan benchmarks. A comprehensive set of experiments convincingly demonstrates that PlanAgent outperforms the existing state-of-the-art in the closed-loop motion planning task. Codes will be soon released.
RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems
We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems, addressing critical challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning. Grounded in cognitive neuroscience, it integrates four core modules: the Information Preprocessor (thalamus-like), the Lifelong Embodied Memory System (hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and the Low-Level Executer (cerebellum-like) to enable long-term planning and cumulative learning. The Lifelong Embodied Memory System, central to the framework, alleviates inference speed issues in complex memory frameworks via parallelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic submodules. It incorporates a dynamic Knowledge Graph (KG) and consistent architectural design to enhance memory consistency and scalability. Evaluations on EmbodiedBench show RoboMemory outperforms the open-source baseline (Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-source State-of-the-Art (SOTA) (Claude3.5-Sonnet) by 5%, establishing new SOTA. Ablation studies validate key components (critic, spatial memory, long-term memory), while real-world deployment confirms its lifelong learning capability with significantly improved success rates across repeated tasks. RoboMemory alleviates high latency challenges with scalability, serving as a foundational reference for integrating multi-modal memory systems in physical robots.
HUGSIM: A Real-Time, Photo-Realistic and Closed-Loop Simulator for Autonomous Driving
In the past few decades, autonomous driving algorithms have made significant progress in perception, planning, and control. However, evaluating individual components does not fully reflect the performance of entire systems, highlighting the need for more holistic assessment methods. This motivates the development of HUGSIM, a closed-loop, photo-realistic, and real-time simulator for evaluating autonomous driving algorithms. We achieve this by lifting captured 2D RGB images into the 3D space via 3D Gaussian Splatting, improving the rendering quality for closed-loop scenarios, and building the closed-loop environment. In terms of rendering, We tackle challenges of novel view synthesis in closed-loop scenarios, including viewpoint extrapolation and 360-degree vehicle rendering. Beyond novel view synthesis, HUGSIM further enables the full closed simulation loop, dynamically updating the ego and actor states and observations based on control commands. Moreover, HUGSIM offers a comprehensive benchmark across more than 70 sequences from KITTI-360, Waymo, nuScenes, and PandaSet, along with over 400 varying scenarios, providing a fair and realistic evaluation platform for existing autonomous driving algorithms. HUGSIM not only serves as an intuitive evaluation benchmark but also unlocks the potential for fine-tuning autonomous driving algorithms in a photorealistic closed-loop setting.
RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
PhysicsMinions: Winning Gold Medals in the Latest Physics Olympiads with a Coevolutionary Multimodal Multi-Agent System
Physics is central to understanding and shaping the real world, and the ability to solve physics problems is a key indicator of real-world physical intelligence. Physics Olympiads, renowned as the crown of competitive physics, provide a rigorous testbed requiring complex reasoning and deep multimodal understanding, yet they remain largely underexplored in AI research. Existing approaches are predominantly single-model based, and open-source MLLMs rarely reach gold-medal-level performance. To address this gap, we propose PhysicsMinions, a coevolutionary multi-agent system for Physics Olympiad. Its architecture features three synergistic studios: a Visual Studio to interpret diagrams, a Logic Studio to formulate solutions, and a Review Studio to perform dual-stage verification. The system coevolves through an iterative refinement loop where feedback from the Review Studio continuously guides the Logic Studio, enabling the system to self-correct and converge towards the ground truth. Evaluated on the HiPhO benchmark spanning 7 latest physics Olympiads, PhysicsMinions delivers three major breakthroughs: (i) Strong generalization: it consistently improves both open-source and closed-source models of different sizes, delivering clear benefits over their single-model baselines; (ii) Historic breakthroughs: it elevates open-source models from only 1-2 to 6 gold medals across 7 Olympiads, achieving the first-ever open-source gold medal in the latest International Physics Olympiad (IPhO) under the average-score metric; and (iii) Scaling to human expert: it further advances the open-source Pass@32 score to 26.8/30 points on the latest IPhO, ranking 4th of 406 contestants and far surpassing the top single-model score of 22.7 (ranked 22nd). Generally, PhysicsMinions offers a generalizable framework for Olympiad-level problem solving, with the potential to extend across disciplines.
Why does in-context learning fail sometimes? Evaluating in-context learning on open and closed questions
We measure the performance of in-context learning as a function of task novelty and difficulty for open and closed questions. For that purpose, we created a novel benchmark consisting of hard scientific questions, each paired with a context of various relevancy. We show that counter-intuitively, a context that is more aligned with the topic does not always help more than a less relevant context. This effect is especially visible for open questions and questions of high difficulty or novelty. This result reveals a fundamental difference between the treatment of close-form and open-form questions by large-language models and shows a need for a more robust evaluation of in-context learning on the variety of different types of questions. It also poses a new question of how to optimally select a context for large language models, especially in the context of Retrieval Augmented Generation (RAG) systems. Our results suggest that the answer to this question can be highly application-dependent and might be contingent on factors including the format of the question, the perceived difficulty level of the questions, and the novelty or popularity of the information we seek.
DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation
Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos based on real-world driving data. Notably, we explicitly leverage structured conditions to control the spatial-temporal consistency of foreground and background elements, thus the generated data adheres closely to traffic constraints. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 24.5%, 39.0%, and 10.5% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 20.3%, 42.0%, and 13.7% in the NTA-IoU metric.
Co-Transport for Class-Incremental Learning
Traditional learning systems are trained in closed-world for a fixed number of classes, and need pre-collected datasets in advance. However, new classes often emerge in real-world applications and should be learned incrementally. For example, in electronic commerce, new types of products appear daily, and in a social media community, new topics emerge frequently. Under such circumstances, incremental models should learn several new classes at a time without forgetting. We find a strong correlation between old and new classes in incremental learning, which can be applied to relate and facilitate different learning stages mutually. As a result, we propose CO-transport for class Incremental Learning (COIL), which learns to relate across incremental tasks with the class-wise semantic relationship. In detail, co-transport has two aspects: prospective transport tries to augment the old classifier with optimal transported knowledge as fast model adaptation. Retrospective transport aims to transport new class classifiers backward as old ones to overcome forgetting. With these transports, COIL efficiently adapts to new tasks, and stably resists forgetting. Experiments on benchmark and real-world multimedia datasets validate the effectiveness of our proposed method.
MemR$^3$: Memory Retrieval via Reflective Reasoning for LLM Agents
Memory systems have been designed to leverage past experiences in Large Language Model (LLM) agents. However, many deployed memory systems primarily optimize compression and storage, with comparatively less emphasis on explicit, closed-loop control of memory retrieval. From this observation, we build memory retrieval as an autonomous, accurate, and compatible agent system, named MemR^3, which has two core mechanisms: 1) a router that selects among retrieve, reflect, and answer actions to optimize answer quality; 2) a global evidence-gap tracker that explicitly renders the answering process transparent and tracks the evidence collection process. This design departs from the standard retrieve-then-answer pipeline by introducing a closed-loop control mechanism that enables autonomous decision-making. Empirical results on the LoCoMo benchmark demonstrate that MemR^3 surpasses strong baselines on LLM-as-a-Judge score, and particularly, it improves existing retrievers across four categories with an overall improvement on RAG (+7.29%) and Zep (+1.94%) using GPT-4.1-mini backend, offering a plug-and-play controller for existing memory stores.
