new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 30

Combiner: Full Attention Transformer with Sparse Computation Cost

Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.

  • 7 authors
·
Jul 12, 2021

Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level

Neighborhood attention reduces the cost of self attention by restricting each token's attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention. These kernels on average provide 895% and 272% improvement in full precision latency compared to existing naive kernels for 1-D and 2-D neighborhood attention respectively. We find certain inherent inefficiencies in all unfused neighborhood attention kernels that bound their performance and lower-precision scalability. We also developed fused neighborhood attention; an adaptation of fused dot-product attention kernels that allow fine-grained control over attention across different spatial axes. Known for reducing the quadratic time complexity of self attention to a linear complexity, neighborhood attention can now enjoy a reduced and constant memory footprint, and record-breaking half precision latency. We observe that our fused kernels successfully circumvent some of the unavoidable inefficiencies in unfused implementations. While our unfused GEMM-based kernels only improve half precision performance compared to naive kernels by an average of 496% and 113% in 1-D and 2-D problems respectively, our fused kernels improve naive kernels by an average of 1607% and 581% in 1-D and 2-D problems respectively.

  • 3 authors
·
Mar 7, 2024

CSSBench: Evaluating the Safety of Lightweight LLMs against Chinese-Specific Adversarial Patterns

Large language models (LLMs) are increasingly deployed in cost-sensitive and on-device scenarios, and safety guardrails have advanced mainly in English. However, real-world Chinese malicious queries typically conceal intent via homophones, pinyin, symbol-based splitting, and other Chinese-specific patterns. These Chinese-specific adversarial patterns create the safety evaluation gap that is not well captured by existing benchmarks focused on English. This gap is particularly concerning for lightweight models, which may be more vulnerable to such specific adversarial perturbations. To bridge this gap, we introduce the Chinese-Specific Safety Benchmark (CSSBench) that emphasizes these adversarial patterns and evaluates the safety of lightweight LLMs in Chinese. Our benchmark covers six domains that are common in real Chinese scenarios, including illegal activities and compliance, privacy leakage, health and medical misinformation, fraud and hate, adult content, and public and political safety, and organizes queries into multiple task types. We evaluate a set of popular lightweight LLMs and measure over-refusal behavior to assess safety-induced performance degradation. Our results show that the Chinese-specific adversarial pattern is a critical challenge for lightweight LLMs. This benchmark offers a comprehensive evaluation of LLM safety in Chinese, assisting robust deployments in practice.

  • 6 authors
·
Jan 2

Can-SAVE: Deploying Low-Cost and Population-Scale Cancer Screening via Survival Analysis Variables and EHR

Conventional medical cancer screening methods are costly, labor-intensive, and extremely difficult to scale. Although AI can improve cancer detection, most systems rely on complex or specialized medical data, making them impractical for large-scale screening. We introduce Can-SAVE, a lightweight AI system that ranks population-wide cancer risks solely based on medical history events. By integrating survival model outputs into a gradient-boosting framework, our approach detects subtle, long-term patient risk patterns - often well before clinical symptoms manifest. Can-SAVE was rigorously evaluated on a real-world dataset of 2.5 million adults spanning five Russian regions, marking the study as one of the largest and most comprehensive deployments of AI-driven cancer risk assessment. In a retrospective oncologist-supervised study over 1.9M patients, Can-SAVE achieves a 4-10x higher detection rate at identical screening volumes and an Average Precision (AP) of 0.228 vs. 0.193 for the best baseline (LoRA-tuned Qwen3-Embeddings via DeepSeek-R1 summarization). In a year-long prospective pilot (426K patients), our method almost doubled the cancer detection rate (+91%) and increased population coverage by 36% over the national screening protocol. The system demonstrates practical scalability: a city-wide population of 1 million patients can be processed in under three hours using standard hardware, enabling seamless clinical integration. This work proves that Can-SAVE achieves nationally significant cancer detection improvements while adhering to real-world public healthcare constraints, offering immediate clinical utility and a replicable framework for population-wide screening. Code for training and feature engineering is available at https://github.com/sb-ai-lab/Can-SAVE.

sb-ai-lab
·
Sep 26, 2023

hist2RNA: An efficient deep learning architecture to predict gene expression from breast cancer histopathology images

Gene expression can be used to subtype breast cancer with improved prediction of risk of recurrence and treatment responsiveness over that obtained using routine immunohistochemistry (IHC). However, in the clinic, molecular profiling is primarily used for ER+ breast cancer, which is costly, tissue destructive, requires specialized platforms and takes several weeks to obtain a result. Deep learning algorithms can effectively extract morphological patterns in digital histopathology images to predict molecular phenotypes quickly and cost-effectively. We propose a new, computationally efficient approach called hist2RNA inspired by bulk RNA-sequencing techniques to predict the expression of 138 genes (incorporated from six commercially available molecular profiling tests), including luminal PAM50 subtype, from hematoxylin and eosin (H&E) stained whole slide images (WSIs). The training phase involves the aggregation of extracted features for each patient from a pretrained model to predict gene expression at the patient level using annotated H&E images from The Cancer Genome Atlas (TCGA, n=335). We demonstrate successful gene prediction on a held-out test set (n = 160, corr = 0.82 across patients, corr = 0.29 across genes) and perform exploratory analysis on an external tissue microarray (TMA) dataset (n = 498) with known IHC and survival information. Our model is able to predict gene expression and luminal PAM50 subtype (Luminal A versus Luminal B) on the TMA dataset with prognostic significance for overall survival in univariate analysis (c-index = 0.56, hazard ratio = 2.16 (95% CI 1.12-3.06), p < 5 x 10-3), and independent significance in multivariate analysis incorporating standard clinicopathological variables (c-index = 0.65, hazard ratio = 1.85 (95% CI 1.30-2.68), p < 5 x 10-3).

  • 6 authors
·
Apr 10, 2023

SIRI: Scaling Iterative Reinforcement Learning with Interleaved Compression

We introduce SIRI, Scaling Iterative Reinforcement Learning with Interleaved Compression, a simple yet effective RL approach for Large Reasoning Models (LRMs) that enables more efficient and accurate reasoning. Existing studies have observed repetitive thinking patterns in LRMs, and attempts to reduce them often come at the cost of performance. In this paper, we show that this trade-off can be overcome through a training regime that iteratively alternates between compressing and expanding the reasoning budget, by dynamically adjusting the maximum rollout length during training. The compression phase cuts the rollout length, forcing the model to make precise and valuable decisions within a limited context, which effectively reduces redundant tokens and increases reasoning density. The expansion phase then relaxes the length limit, providing space for the model to explore and plan in long-horizon settings. Remarkably, we find that after each compression-expansion cycle, the model's performance improves even as its output length decreases, steadily pushing it closer to the Pareto frontier in the performance-efficiency trade-off. Training on DeepSeek-R1-Distill-Qwen-1.5B, SIRI-low improves performance on AIME24 by 43.2% while reducing token usage by 46.9% after three iterations, and SIRI-high achieves the highest accuracy compared to all other methods (Figure 1). Our findings shed light on the potential of periodically oscillating the LRM's output truncation length during training to dynamically balance exploration and efficiency in reasoning, converging towards an optimal "sweet spot" between the two. Our models are publicly available.

Parallel Learning by Multitasking Neural Networks

A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).

  • 4 authors
·
Aug 8, 2023

MirrorGuard: Toward Secure Computer-Use Agents via Simulation-to-Real Reasoning Correction

Large foundation models are integrated into Computer Use Agents (CUAs), enabling autonomous interaction with operating systems through graphical user interfaces (GUIs) to perform complex tasks. This autonomy introduces serious security risks: malicious instructions or visual prompt injections can trigger unsafe reasoning and cause harmful system-level actions. Existing defenses, such as detection-based blocking, prevent damage but often abort tasks prematurely, reducing agent utility. In this paper, we present MirrorGuard, a plug-and-play defense framework that uses simulation-based training to improve CUA security in the real world. To reduce the cost of large-scale training in operating systems, we propose a novel neural-symbolic simulation pipeline, which generates realistic, high-risk GUI interaction trajectories entirely in a text-based simulated environment, which captures unsafe reasoning patterns and potential system hazards without executing real operations. In the simulation environment, MirrorGuard learns to intercept and rectify insecure reasoning chains of CUAs before they produce and execute unsafe actions. In real-world testing, extensive evaluations across diverse benchmarks and CUA architectures show that MirrorGuard significantly mitigates security risks. For instance, on the ByteDance UI-TARS system, it reduces the unsafe rate from 66.5% to 13.0% while maintaining a marginal false refusal rate (FRR). In contrast, the state-of-the-art GuardAgent only achieves a reduction to 53.9% and suffers from a 15.4% higher FRR. Our work proves that simulation-derived defenses can provide robust, real-world protection while maintaining the fundamental utility of the agent. Our code and model are publicly available at https://bmz-q-q.github.io/MirrorGuard/.

  • 6 authors
·
Jan 19

Robust Single-shot Structured Light 3D Imaging via Neural Feature Decoding

We consider the problem of active 3D imaging using single-shot structured light systems, which are widely employed in commercial 3D sensing devices such as Apple Face ID and Intel RealSense. Traditional structured light methods typically decode depth correspondences through pixel-domain matching algorithms, resulting in limited robustness under challenging scenarios like occlusions, fine-structured details, and non-Lambertian surfaces. Inspired by recent advances in neural feature matching, we propose a learning-based structured light decoding framework that performs robust correspondence matching within feature space rather than the fragile pixel domain. Our method extracts neural features from the projected patterns and captured infrared (IR) images, explicitly incorporating their geometric priors by building cost volumes in feature space, achieving substantial performance improvements over pixel-domain decoding approaches. To further enhance depth quality, we introduce a depth refinement module that leverages strong priors from large-scale monocular depth estimation models, improving fine detail recovery and global structural coherence. To facilitate effective learning, we develop a physically-based structured light rendering pipeline, generating nearly one million synthetic pattern-image pairs with diverse objects and materials for indoor settings. Experiments demonstrate that our method, trained exclusively on synthetic data with multiple structured light patterns, generalizes well to real-world indoor environments, effectively processes various pattern types without retraining, and consistently outperforms both commercial structured light systems and passive stereo RGB-based depth estimation methods. Project page: https://namisntimpot.github.io/NSLweb/.

  • 7 authors
·
Dec 15, 2025

Multi-agent Reinforcement Learning-based Network Intrusion Detection System

Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of computer networks. Machine learning has emerged as a popular approach for intrusion detection due to its ability to analyze and detect patterns in large volumes of data. However, current ML-based IDS solutions often struggle to keep pace with the ever-changing nature of attack patterns and the emergence of new attack types. Additionally, these solutions face challenges related to class imbalance, where the number of instances belonging to different classes (normal and intrusions) is significantly imbalanced, which hinders their ability to effectively detect minor classes. In this paper, we propose a novel multi-agent reinforcement learning (RL) architecture, enabling automatic, efficient, and robust network intrusion detection. To enhance the capabilities of the proposed model, we have improved the DQN algorithm by implementing the weighted mean square loss function and employing cost-sensitive learning techniques. Our solution introduces a resilient architecture designed to accommodate the addition of new attacks and effectively adapt to changes in existing attack patterns. Experimental results realized using CIC-IDS-2017 dataset, demonstrate that our approach can effectively handle the class imbalance problem and provide a fine grained classification of attacks with a very low false positive rate. In comparison to the current state-of-the-art works, our solution demonstrates a significant superiority in both detection rate and false positive rate.

  • 4 authors
·
Jul 8, 2024

Context-aware Decoding Reduces Hallucination in Query-focused Summarization

Query-focused summarization (QFS) aims to provide a summary of a single document/multi documents that can satisfy the information needs of a given query. It is useful for various real-world applications, such as abstractive snippet generation or more recent retrieval augmented generation (RAG). A prototypical QFS pipeline consists of a retriever (sparse or dense retrieval) and a generator (usually a large language model). However, applying large language models (LLM) potentially leads to hallucinations, especially when the evidence contradicts the prior belief of LLMs. There has been growing interest in developing new decoding methods to improve generation quality and reduce hallucination. In this work, we conduct a large-scale reproducibility study on one recently proposed decoding method -- Context-aware Decoding (CAD). In addition to replicating CAD's experiments on news summarization datasets, we include experiments on QFS datasets, and conduct more rigorous analysis on computational complexity and hyperparameter sensitivity. Experiments with eight different language models show that performance-wise, CAD improves QFS quality by (1) reducing factuality errors/hallucinations while (2) mostly retaining the match of lexical patterns, measured by ROUGE scores, while also at a cost of increased inference-time FLOPs and reduced decoding speed. The code implementation based on Huggingface Library is made available https://github.com/zhichaoxu-shufe/context-aware-decoding-qfs

  • 1 authors
·
Dec 21, 2023

Comparing Dataset Characteristics that Favor the Apriori, Eclat or FP-Growth Frequent Itemset Mining Algorithms

Frequent itemset mining is a popular data mining technique. Apriori, Eclat, and FP-Growth are among the most common algorithms for frequent itemset mining. Considerable research has been performed to compare the relative performance between these three algorithms, by evaluating the scalability of each algorithm as the dataset size increases. While scalability as data size increases is important, previous papers have not examined the performance impact of similarly sized datasets that contain different itemset characteristics. This paper explores the effects that two dataset characteristics can have on the performance of these three frequent itemset algorithms. To perform this empirical analysis, a dataset generator is created to measure the effects of frequent item density and the maximum transaction size on performance. The generated datasets contain the same number of rows. This provides some insight into dataset characteristics that are conducive to each algorithm. The results of this paper's research demonstrate Eclat and FP-Growth both handle increases in maximum transaction size and frequent itemset density considerably better than the Apriori algorithm. This paper explores the effects that two dataset characteristics can have on the performance of these three frequent itemset algorithms. To perform this empirical analysis, a dataset generator is created to measure the effects of frequent item density and the maximum transaction size on performance. The generated datasets contain the same number of rows. This provides some insight into dataset characteristics that are conducive to each algorithm. The results of this paper's research demonstrate Eclat and FP-Growth both handle increases in maximum transaction size and frequent itemset density considerably better than the Apriori algorithm.

  • 1 authors
·
Jan 30, 2017

Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey

Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.

  • 6 authors
·
Feb 1, 2025

A Framework For Refining Text Classification and Object Recognition from Academic Articles

With the widespread use of the internet, it has become increasingly crucial to extract specific information from vast amounts of academic articles efficiently. Data mining techniques are generally employed to solve this issue. However, data mining for academic articles is challenging since it requires automatically extracting specific patterns in complex and unstructured layout documents. Current data mining methods for academic articles employ rule-based(RB) or machine learning(ML) approaches. However, using rule-based methods incurs a high coding cost for complex typesetting articles. On the other hand, simply using machine learning methods requires annotation work for complex content types within the paper, which can be costly. Furthermore, only using machine learning can lead to cases where patterns easily recognized by rule-based methods are mistakenly extracted. To overcome these issues, from the perspective of analyzing the standard layout and typesetting used in the specified publication, we emphasize implementing specific methods for specific characteristics in academic articles. We have developed a novel Text Block Refinement Framework (TBRF), a machine learning and rule-based scheme hybrid. We used the well-known ACL proceeding articles as experimental data for the validation experiment. The experiment shows that our approach achieved over 95% classification accuracy and 90% detection accuracy for tables and figures.

  • 4 authors
·
May 27, 2023