new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 20

MEETI: A Multimodal ECG Dataset from MIMIC-IV-ECG with Signals, Images, Features and Interpretations

Electrocardiogram (ECG) plays a foundational role in modern cardiovascular care, enabling non-invasive diagnosis of arrhythmias, myocardial ischemia, and conduction disorders. While machine learning has achieved expert-level performance in ECG interpretation, the development of clinically deployable multimodal AI systems remains constrained, primarily due to the lack of publicly available datasets that simultaneously incorporate raw signals, diagnostic images, and interpretation text. Most existing ECG datasets provide only single-modality data or, at most, dual modalities, making it difficult to build models that can understand and integrate diverse ECG information in real-world settings. To address this gap, we introduce MEETI (MIMIC-IV-Ext ECG-Text-Image), the first large-scale ECG dataset that synchronizes raw waveform data, high-resolution plotted images, and detailed textual interpretations generated by large language models. In addition, MEETI includes beat-level quantitative ECG parameters extracted from each lead, offering structured parameters that support fine-grained analysis and model interpretability. Each MEETI record is aligned across four components: (1) the raw ECG waveform, (2) the corresponding plotted image, (3) extracted feature parameters, and (4) detailed interpretation text. This alignment is achieved using consistent, unique identifiers. This unified structure supports transformer-based multimodal learning and supports fine-grained, interpretable reasoning about cardiac health. By bridging the gap between traditional signal analysis, image-based interpretation, and language-driven understanding, MEETI established a robust foundation for the next generation of explainable, multimodal cardiovascular AI. It offers the research community a comprehensive benchmark for developing and evaluating ECG-based AI systems.

  • 7 authors
·
Jul 21, 2025

PPGFlowECG: Latent Rectified Flow with Cross-Modal Encoding for PPG-Guided ECG Generation and Cardiovascular Disease Detection

In clinical practice, electrocardiography (ECG) remains the gold standard for cardiac monitoring, providing crucial insights for diagnosing a wide range of cardiovascular diseases (CVDs). However, its reliance on specialized equipment and trained personnel limits feasibility for continuous routine monitoring. Photoplethysmography (PPG) offers accessible, continuous monitoring but lacks definitive electrophysiological information, preventing conclusive diagnosis. Generative models present a promising approach to translate PPG into clinically valuable ECG signals, yet current methods face substantial challenges, including the misalignment of physiological semantics in generative models and the complexity of modeling in high-dimensional signals. To this end, we propose PPGFlowECG, a two-stage framework that aligns PPG and ECG in a shared latent space via the CardioAlign Encoder and employs latent rectified flow to generate ECGs with high fidelity and interpretability. To the best of our knowledge, this is the first study to experiment on MCMED, a newly released clinical-grade dataset comprising over 10 million paired PPG-ECG samples from more than 118,000 emergency department visits with expert-labeled cardiovascular disease annotations. Results demonstrate the effectiveness of our method for PPG-to-ECG translation and cardiovascular disease detection. Moreover, cardiologist-led evaluations confirm that the synthesized ECGs achieve high fidelity and improve diagnostic reliability, underscoring our method's potential for real-world cardiovascular screening.

  • 9 authors
·
Sep 24, 2025

Reading Your Heart: Learning ECG Words and Sentences via Pre-training ECG Language Model

Electrocardiogram (ECG) is essential for the clinical diagnosis of arrhythmias and other heart diseases, but deep learning methods based on ECG often face limitations due to the need for high-quality annotations. Although previous ECG self-supervised learning (eSSL) methods have made significant progress in representation learning from unannotated ECG data, they typically treat ECG signals as ordinary time-series data, segmenting the signals using fixed-size and fixed-step time windows, which often ignore the form and rhythm characteristics and latent semantic relationships in ECG signals. In this work, we introduce a novel perspective on ECG signals, treating heartbeats as words and rhythms as sentences. Based on this perspective, we first designed the QRS-Tokenizer, which generates semantically meaningful ECG sentences from the raw ECG signals. Building on these, we then propose HeartLang, a novel self-supervised learning framework for ECG language processing, learning general representations at form and rhythm levels. Additionally, we construct the largest heartbeat-based ECG vocabulary to date, which will further advance the development of ECG language processing. We evaluated HeartLang across six public ECG datasets, where it demonstrated robust competitiveness against other eSSL methods. Our data and code are publicly available at https://github.com/PKUDigitalHealth/HeartLang.

  • 6 authors
·
Feb 15, 2025

Electrocardiogram-Language Model for Few-Shot Question Answering with Meta Learning

Electrocardiogram (ECG) interpretation requires specialized expertise, often involving synthesizing insights from ECG signals with complex clinical queries posed in natural language. The scarcity of labeled ECG data coupled with the diverse nature of clinical inquiries presents a significant challenge for developing robust and adaptable ECG diagnostic systems. This work introduces a novel multimodal meta-learning method for few-shot ECG question answering, addressing the challenge of limited labeled data while leveraging the rich knowledge encoded within large language models (LLMs). Our LLM-agnostic approach integrates a pre-trained ECG encoder with a frozen LLM (e.g., LLaMA and Gemma) via a trainable fusion module, enabling the language model to reason about ECG data and generate clinically meaningful answers. Extensive experiments demonstrate superior generalization to unseen diagnostic tasks compared to supervised baselines, achieving notable performance even with limited ECG leads. For instance, in a 5-way 5-shot setting, our method using LLaMA-3.1-8B achieves accuracy of 84.6%, 77.3%, and 69.6% on single verify, choose and query question types, respectively. These results highlight the potential of our method to enhance clinical ECG interpretation by combining signal processing with the nuanced language understanding capabilities of LLMs, particularly in data-constrained scenarios.

  • 5 authors
·
Oct 18, 2024

High-Accuracy ECG Image Interpretation using Parameter-Efficient LoRA Fine-Tuning with Multimodal LLaMA 3.2

Electrocardiogram (ECG) interpretation is a cornerstone of cardiac diagnostics. This paper explores a practical approach to enhance ECG image interpretation using the multimodal LLaMA 3.2 model. We used a parameter-efficient fine-tuning strategy, Low-Rank Adaptation (LoRA), specifically designed to boost the model's ability to understand ECG images and achieve better outcomes across a wide range of cardiac conditions. Our method is tailored for ECG analysis and leverages ECGInstruct, a large-scale instruction dataset with 1 Million samples. This dataset is a rich collection of synthesized ECG images, generated from raw ECG data from trusted open-source repositories like MIMIC-IV ECG and PTB-XL. Each ECG image in ECGInstruct comes with expert-written questions and detailed answers, covering diverse ECG interpretation scenarios, including complex cardiac conditions like Myocardial Infarction and Conduction Disturbances. Our fine-tuning approach efficiently adapts the LLaMA 3.2 model (built upon LLaMA 3) by integrating low-rank adaptation techniques, focusing on efficiency by updating only a small set of parameters, specifically ignoring the `lm_head` and `embed_tokens` layers. This paper details the model setup, our efficient fine-tuning method, and implementation specifics. We provide a thorough evaluation through extensive experiments, demonstrating the effectiveness of our method across various ECG interpretation tasks. The results convincingly show that our parameter-efficient LoRA fine-tuning achieves excellent performance in ECG image interpretation, significantly outperforming baseline models and reaching accuracy comparable to or exceeding traditional CNN-based methods in identifying a wide range of cardiac abnormalities, including over 70 conditions from the PTB-XL dataset.

  • 2 authors
·
Jan 30, 2025

Deep Learning for Personalized Electrocardiogram Diagnosis: A Review

The electrocardiogram (ECG) remains a fundamental tool in cardiac diagnostics, yet its interpretation traditionally reliant on the expertise of cardiologists. The emergence of deep learning has heralded a revolutionary era in medical data analysis, particularly in the domain of ECG diagnostics. However, inter-patient variability prohibit the generalibility of ECG-AI model trained on a population dataset, hence degrade the performance of ECG-AI on specific patient or patient group. Many studies have address this challenge using different deep learning technologies. This comprehensive review systematically synthesizes research from a wide range of studies to provide an in-depth examination of cutting-edge deep-learning techniques in personalized ECG diagnosis. The review outlines a rigorous methodology for the selection of pertinent scholarly articles and offers a comprehensive overview of deep learning approaches applied to personalized ECG diagnostics. Moreover, the challenges these methods encounter are investigated, along with future research directions, culminating in insights into how the integration of deep learning can transform personalized ECG diagnosis and enhance cardiac care. By emphasizing both the strengths and limitations of current methodologies, this review underscores the immense potential of deep learning to refine and redefine ECG analysis in clinical practice, paving the way for more accurate, efficient, and personalized cardiac diagnostics.

  • 4 authors
·
Sep 12, 2024

Self-Supervised Pre-Training with Joint-Embedding Predictive Architecture Boosts ECG Classification Performance

Accurate diagnosis of heart arrhythmias requires the interpretation of electrocardiograms (ECG), which capture the electrical activity of the heart. Automating this process through machine learning is challenging due to the need for large annotated datasets, which are difficult and costly to collect. To address this issue, transfer learning is often employed, where models are pre-trained on large datasets and fine-tuned for specific ECG classification tasks with limited labeled data. Self-supervised learning has become a widely adopted pre-training method, enabling models to learn meaningful representations from unlabeled datasets. In this work, we explore the joint-embedding predictive architecture (JEPA) for self-supervised learning from ECG data. Unlike invariance-based methods, JEPA does not rely on hand-crafted data augmentations, and unlike generative methods, it predicts latent features rather than reconstructing input data. We create a large unsupervised pre-training dataset by combining ten public ECG databases, amounting to over one million records. We pre-train Vision Transformers using JEPA on this dataset and fine-tune them on various PTB-XL benchmarks. Our results show that JEPA outperforms existing invariance-based and generative approaches, achieving an AUC of 0.945 on the PTB-XL all statements task. JEPA consistently learns the highest quality representations, as demonstrated in linear evaluations, and proves advantageous for pre-training even in the absence of additional data.

  • 2 authors
·
Oct 2, 2024

Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement

Electrocardiograms (ECGs) are non-invasive diagnostic tools crucial for detecting cardiac arrhythmic diseases in clinical practice. While ECG Self-supervised Learning (eSSL) methods show promise in representation learning from unannotated ECG data, they often overlook the clinical knowledge that can be found in reports. This oversight and the requirement for annotated samples for downstream tasks limit eSSL's versatility. In this work, we address these issues with the Multimodal ECG Representation Learning (MERL}) framework. Through multimodal learning on ECG records and associated reports, MERL is capable of performing zero-shot ECG classification with text prompts, eliminating the need for training data in downstream tasks. At test time, we propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach, which uses Large Language Models (LLMs) to exploit external expert-verified clinical knowledge databases, generating more descriptive prompts and reducing hallucinations in LLM-generated content to boost zero-shot classification. Based on MERL, we perform the first benchmark across six public ECG datasets, showing the superior performance of MERL compared against eSSL methods. Notably, MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10\% annotated training data, averaged across all six datasets. Code and models are available at https://github.com/cheliu-computation/MERL

  • 6 authors
·
Mar 11, 2024

EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks

Electrocardiogram (ECG) is a widely used tool for assessing cardiac function due to its low cost and accessibility. Emergent research shows that ECGs can help make predictions on key outcomes traditionally derived from more complex modalities such as echocardiograms (ECHO), enabling the use of ECGs as a more accessible method to predict broader measurements of cardiac function. ECHO, in particular, are of great importance because they require considerable hospital resources while playing a key role in clinical cardiac assessment. To aid this use case, we introduce EchoingECG, a probabilistic student-teacher model that leverages uncertainty-aware ECG embeddings and ECHO supervision to improve ECG-based cardiac function prediction. Our approach integrates Probabilistic Cross-Modal Embeddings (PCME++), a probabilistic contrastive framework, with ECHO-CLIP, a vision-language pre-trained model trained on ECHO-text pairs, to distill ECHO knowledge into ECG representations. Through experiments and external validation, we showed that EchoingECG outperforms state-of-the-art foundation ECG models in zero-shot, few-shot, and fine-tune settings for ECHO predictions based on ECG. We also highlighted that variance estimation (enabled through our method) enhanced our understanding of model performance by identifying underlying regions of uncertainty within ECGs. The code is available: https://github.com/mcintoshML/EchoingECG.

  • 3 authors
·
Sep 30, 2025

ECGNet: A generative adversarial network (GAN) approach to the synthesis of 12-lead ECG signals from single lead inputs

Electrocardiography (ECG) signal generation has been heavily explored using generative adversarial networks (GAN) because the implementation of 12-lead ECGs is not always feasible. The GAN models have achieved remarkable results in reproducing ECG signals but are only designed for multiple lead inputs and the features the GAN model preserves have not been identified-limiting the generated signals use in cardiovascular disease (CVD)-predictive models. This paper presents ECGNet which is a procedure that generates a complete set of 12-lead ECG signals from any single lead input using a GAN framework with a bidirectional long short-term memory (LSTM) generator and a convolutional neural network (CNN) discriminator. Cross and auto-correlation analysis performed on the generated signals identifies features conserved during the signal generation-i.e., features that can characterize the unique-nature of each signal and thus likely indicators of CVD. Finally, by using ECG signals annotated with the CVD-indicative features detailed by the correlation analysis as inputs for a CVD-onset-predictive CNN model, we overcome challenges preventing the prediction of multiple-CVD targets. Our models are experimented on 15s 12-lead ECG dataset recorded using MyoVista's wavECG. Functional outcome data for each patient is recorded and used in the CVD-predictive model. Our best GAN model achieves state-of-the-art accuracy with Frechet Distance (FD) scores of 4.73, 4.89, 5.18, 4.77, 4.71, and 5.55 on the V1-V6 pre-cordial leads respectively and shows strength in preserving the P-Q segments and R-peaks in the generated signals. To the best of our knowledge, ECGNet is the first to predict all of the remaining eleven leads from the input of any single lead.

  • 3 authors
·
Sep 23, 2023

From Token to Rhythm: A Multi-Scale Approach for ECG-Language Pretraining

Electrocardiograms (ECGs) play a vital role in monitoring cardiac health and diagnosing heart diseases. However, traditional deep learning approaches for ECG analysis rely heavily on large-scale manual annotations, which are both time-consuming and resource-intensive to obtain. To overcome this limitation, self-supervised learning (SSL) has emerged as a promising alternative, enabling the extraction of robust ECG representations that can be efficiently transferred to various downstream tasks. While previous studies have explored SSL for ECG pretraining and multi-modal ECG-language alignment, they often fail to capture the multi-scale nature of ECG signals. As a result, these methods struggle to learn generalized representations due to their inability to model the hierarchical structure of ECG data. To address this gap, we introduce MELP, a novel Multi-scale ECG-Language Pretraining (MELP) model that fully leverages hierarchical supervision from ECG-text pairs. MELP first pretrains a cardiology-specific language model to enhance its understanding of clinical text. It then applies three levels of cross-modal supervision-at the token, beat, and rhythm levels-to align ECG signals with textual reports, capturing structured information across different time scales. We evaluate MELP on three public ECG datasets across multiple tasks, including zero-shot ECG classification, linear probing, and transfer learning. Experimental results demonstrate that MELP outperforms existing SSL methods, underscoring its effectiveness and adaptability across diverse clinical applications. Our code is available at https://github.com/HKU-MedAI/MELP.

  • 3 authors
·
Jun 11, 2025

Reconstructing 12-Lead ECG from 3-Lead ECG using Variational Autoencoder to Improve Cardiac Disease Detection of Wearable ECG Devices

Twelve-lead electrocardiograms (ECGs) are the clinical gold standard for cardiac diagnosis, providing comprehensive spatial coverage of the heart necessary to detect conditions such as myocardial infarction (MI). However, their lack of portability limits continuous and large-scale use. Three-lead ECG systems are widely used in wearable devices due to their simplicity and mobility, but they often fail to capture pathologies in unmeasured regions. To address this, we propose WearECG, a Variational Autoencoder (VAE) method that reconstructs twelve-lead ECGs from three leads: II, V1, and V5. Our model includes architectural improvements to better capture temporal and spatial dependencies in ECG signals. We evaluate generation quality using MSE, MAE, and Frechet Inception Distance (FID), and assess clinical validity via a Turing test with expert cardiologists. To further validate diagnostic utility, we fine-tune ECGFounder, a large-scale pretrained ECG model, on a multi-label classification task involving over 40 cardiac conditions, including six different myocardial infarction locations, using both real and generated signals. Experiments on the MIMIC dataset show that our method produces physiologically realistic and diagnostically informative signals, with robust performance in downstream tasks. This work demonstrates the potential of generative modeling for ECG reconstruction and its implications for scalable, low-cost cardiac screening.

  • 9 authors
·
Oct 13, 2025

ECG-R1: Protocol-Guided and Modality-Agnostic MLLM for Reliable ECG Interpretation

Electrocardiography (ECG) serves as an indispensable diagnostic tool in clinical practice, yet existing multimodal large language models (MLLMs) remain unreliable for ECG interpretation, often producing plausible but clinically incorrect analyses. To address this, we propose ECG-R1, the first reasoning MLLM designed for reliable ECG interpretation via three innovations. First, we construct the interpretation corpus using Protocol-Guided Instruction Data Generation, grounding interpretation in measurable ECG features and monograph-defined quantitative thresholds and diagnostic logic. Second, we present a modality-decoupled architecture with Interleaved Modality Dropout to improve robustness and cross-modal consistency when either the ECG signal or ECG image is missing. Third, we present Reinforcement Learning with ECG Diagnostic Evidence Rewards to strengthen evidence-grounded ECG interpretation. Additionally, we systematically evaluate the ECG interpretation capabilities of proprietary, open-source, and medical MLLMs, and provide the first quantitative evidence that severe hallucinations are widespread, suggesting that the public should not directly trust these outputs without independent verification. Code and data are publicly available at https://github.com/PKUDigitalHealth/ECG-R1{here}, and an online platform can be accessed at http://ai.heartvoice.com.cn/ECG-R1/{here}.

  • 12 authors
·
Feb 4

One Dimensional CNN ECG Mamba for Multilabel Abnormality Classification in 12 Lead ECG

Accurate detection of cardiac abnormalities from electrocardiogram recordings is regarded as essential for clinical diagnostics and decision support. Traditional deep learning models such as residual networks and transformer architectures have been applied successfully to this task, but their performance has been limited when long sequential signals are processed. Recently, state space models have been introduced as an efficient alternative. In this study, a hybrid framework named One Dimensional Convolutional Neural Network Electrocardiogram Mamba is introduced, in which convolutional feature extraction is combined with Mamba, a selective state space model designed for effective sequence modeling. The model is built upon Vision Mamba, a bidirectional variant through which the representation of temporal dependencies in electrocardiogram data is enhanced. Comprehensive experiments on the PhysioNet Computing in Cardiology Challenges of 2020 and 2021 were conducted, and superior performance compared with existing methods was achieved. Specifically, the proposed model achieved substantially higher AUPRC and AUROC scores than those reported by the best previously published algorithms on twelve lead electrocardiograms. These results demonstrate the potential of Mamba-based architectures to advance reliable ECG classification. This capability supports early diagnosis and personalized treatment, while enhancing accessibility in telemedicine and resource-constrained healthcare systems.

  • 4 authors
·
Oct 14, 2025

Deep Learning Models for Arrhythmia Classification Using Stacked Time-frequency Scalogram Images from ECG Signals

Electrocardiograms (ECGs), a medical monitoring technology recording cardiac activity, are widely used for diagnosing cardiac arrhythmia. The diagnosis is based on the analysis of the deformation of the signal shapes due to irregular heart rates associated with heart diseases. Due to the infeasibility of manual examination of large volumes of ECG data, this paper aims to propose an automated AI based system for ECG-based arrhythmia classification. To this front, a deep learning based solution has been proposed for ECG-based arrhythmia classification. Twelve lead electrocardiograms (ECG) of length 10 sec from 45, 152 individuals from Shaoxing People's Hospital (SPH) dataset from PhysioNet with four different types of arrhythmias were used. The sampling frequency utilized was 500 Hz. Median filtering was used to preprocess the ECG signals. For every 1 sec of ECG signal, the time-frequency (TF) scalogram was estimated and stacked row wise to obtain a single image from 12 channels, resulting in 10 stacked TF scalograms for each ECG signal. These stacked TF scalograms are fed to the pretrained convolutional neural network (CNN), 1D CNN, and 1D CNN-LSTM (Long short-term memory) models, for arrhythmia classification. The fine-tuned CNN models obtained the best test accuracy of about 98% followed by 95% test accuracy by basic CNN-LSTM in arrhythmia classification.

  • 2 authors
·
Nov 30, 2023

Sensing Cardiac Health Across Scenarios and Devices: A Multi-Modal Foundation Model Pretrained on Heterogeneous Data from 1.7 Million Individuals

Cardiac biosignals, such as electrocardiograms (ECG) and photoplethysmograms (PPG), are of paramount importance for the diagnosis, prevention, and management of cardiovascular diseases, and have been extensively used in a variety of clinical tasks. Conventional deep learning approaches for analyzing these signals typically rely on homogeneous datasets and static bespoke models, limiting their robustness and generalizability across diverse clinical settings and acquisition protocols. In this study, we present a cardiac sensing foundation model (CSFM) that leverages advanced transformer architectures and a generative, masked pretraining strategy to learn unified representations from vast, heterogeneous health records. Our model is pretrained on an innovative multi-modal integration of data from multiple large-scale datasets (including MIMIC-III-WDB, MIMIC-IV-ECG, and CODE), comprising cardiac signals and the corresponding clinical or machine-generated text reports from approximately 1.7 million individuals. We demonstrate that the embeddings derived from our CSFM not only serve as effective feature extractors across diverse cardiac sensing scenarios, but also enable seamless transfer learning across varying input configurations and sensor modalities. Extensive evaluations across diagnostic tasks, demographic information recognition, vital sign measurement, clinical outcome prediction, and ECG question answering reveal that CSFM consistently outperforms traditional one-modal-one-task approaches. Notably, CSFM exhibits robust performance across multiple ECG lead configurations from standard 12-lead systems to single-lead setups, and in scenarios where only ECG, only PPG, or a combination thereof is available. These findings highlight the potential of CSFM as a versatile and scalable solution, for comprehensive cardiac monitoring.

  • 13 authors
·
Jun 23, 2025

GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images

While recent multimodal large language models (MLLMs) have advanced automated ECG interpretation, they still face two key limitations: (1) insufficient multimodal synergy between time series signals and visual ECG representations, and (2) limited explainability in linking diagnoses to granular waveform evidence. We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation. GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations: a dual-encoder framework extracting complementary time series and image features, cross-modal alignment for effective multimodal understanding, and knowledge-guided instruction generation for generating high-granularity grounding data (ECG-Grounding) linking diagnoses to measurable parameters (e.g., QRS/PR Intervals). Additionally, we propose the Grounded ECG Understanding task, a clinically motivated benchmark designed to comprehensively assess the MLLM's capability in grounded ECG understanding. Experimental results on both existing and our proposed benchmarks show GEM significantly improves predictive performance (CSN 7.4% uparrow), explainability (22.7% uparrow), and grounding (24.8% uparrow), making it more suitable for real-world clinical applications. GitHub repository: https://github.com/lanxiang1017/GEM.git

  • 6 authors
·
Mar 8, 2025

Mythological Medical Machine Learning: Boosting the Performance of a Deep Learning Medical Data Classifier Using Realistic Physiological Models

Objective: To determine if a realistic, but computationally efficient model of the electrocardiogram can be used to pre-train a deep neural network (DNN) with a wide range of morphologies and abnormalities specific to a given condition - T-wave Alternans (TWA) as a result of Post-Traumatic Stress Disorder, or PTSD - and significantly boost performance on a small database of rare individuals. Approach: Using a previously validated artificial ECG model, we generated 180,000 artificial ECGs with or without significant TWA, with varying heart rate, breathing rate, TWA amplitude, and ECG morphology. A DNN, trained on over 70,000 patients to classify 25 different rhythms, was modified the output layer to a binary class (TWA or no-TWA, or equivalently, PTSD or no-PTSD), and transfer learning was performed on the artificial ECG. In a final transfer learning step, the DNN was trained and cross-validated on ECG from 12 PTSD and 24 controls for all combinations of using the three databases. Main results: The best performing approach (AUROC = 0.77, Accuracy = 0.72, F1-score = 0.64) was found by performing both transfer learning steps, using the pre-trained arrhythmia DNN, the artificial data and the real PTSD-related ECG data. Removing the artificial data from training led to the largest drop in performance. Removing the arrhythmia data from training provided a modest, but significant, drop in performance. The final model showed no significant drop in performance on the artificial data, indicating no overfitting. Significance: In healthcare, it is common to only have a small collection of high-quality data and labels, or a larger database with much lower quality (and less relevant) labels. The paradigm presented here, involving model-based performance boosting, provides a solution through transfer learning on a large realistic artificial database, and a partially relevant real database.

  • 6 authors
·
Dec 28, 2021

QualityFM: a Multimodal Physiological Signal Foundation Model with Self-Distillation for Signal Quality Challenges in Critically Ill Patients

Photoplethysmogram (PPG) and electrocardiogram (ECG) are commonly recorded in intesive care unit (ICU) and operating room (OR). However, the high incidence of poor, incomplete, and inconsistent signal quality, can lead to false alarms or diagnostic inaccuracies. The methods explored so far suffer from limited generalizability, reliance on extensive labeled data, and poor cross-task transferability. To overcome these challenges, we introduce QualityFM, a novel multimodal foundation model for these physiological signals, designed to acquire a general-purpose understanding of signal quality. Our model is pre-trained on an large-scale dataset comprising over 21 million 30-second waveforms and 179,757 hours of data. Our approach involves a dual-track architecture that processes paired physiological signals of differing quality, leveraging a self-distillation strategy where an encoder for high-quality signals is used to guide the training of an encoder for low-quality signals. To efficiently handle long sequential signals and capture essential local quasi-periodic patterns, we integrate a windowed sparse attention mechanism within our Transformer-based model. Furthermore, a composite loss function, which combines direct distillation loss on encoder outputs with indirect reconstruction loss based on power and phase spectra, ensures the preservation of frequency-domain characteristics of the signals. We pre-train three models with varying parameter counts (9.6 M to 319 M) and demonstrate their efficacy and practical value through transfer learning on three distinct clinical tasks: false alarm of ventricular tachycardia detection, the identification of atrial fibrillation and the estimation of arterial blood pressure (ABP) from PPG and ECG signals.

  • 3 authors
·
Sep 8, 2025

Prototype Learning to Create Refined Interpretable Digital Phenotypes from ECGs

Prototype-based neural networks offer interpretable predictions by comparing inputs to learned, representative signal patterns anchored in training data. While such models have shown promise in the classification of physiological data, it remains unclear whether their prototypes capture an underlying structure that aligns with broader clinical phenotypes. We use a prototype-based deep learning model trained for multi-label ECG classification using the PTB-XL dataset. Then without modification we performed inference on the MIMIC-IV clinical database. We assess whether individual prototypes, trained solely for classification, are associated with hospital discharge diagnoses in the form of phecodes in this external population. Individual prototypes demonstrate significantly stronger and more specific associations with clinical outcomes compared to the classifier's class predictions, NLP-extracted concepts, or broader prototype classes across all phecode categories. Prototype classes with mixed significance patterns exhibit significantly greater intra-class distances (p < 0.0001), indicating the model learned to differentiate clinically meaningful variations within diagnostic categories. The prototypes achieve strong predictive performance across diverse conditions, with AUCs ranging from 0.89 for atrial fibrillation to 0.91 for heart failure, while also showing substantial signal for non-cardiac conditions such as sepsis and renal disease. These findings suggest that prototype-based models can support interpretable digital phenotyping from physiologic time-series data, providing transferable intermediate phenotypes that capture clinically meaningful physiologic signatures beyond their original training objectives.

  • 6 authors
·
Aug 2, 2025

ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning

Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model's true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments, enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model's projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.

  • 7 authors
·
Apr 11, 2025

CardioForest: An Explainable Ensemble Learning Model for Automatic Wide QRS Complex Tachycardia Diagnosis from ECG

This study aims to develop and evaluate an ensemble machine learning-based framework for the automatic detection of Wide QRS Complex Tachycardia (WCT) from ECG signals, emphasizing diagnostic accuracy and interpretability using Explainable AI. The proposed system integrates ensemble learning techniques, i.e., an optimized Random Forest known as CardioForest, and models like XGBoost and LightGBM. The models were trained and tested on ECG data from the publicly available MIMIC-IV dataset. The testing was carried out with the assistance of accuracy, balanced accuracy, precision, recall, F1 score, ROC-AUC, and error rate (RMSE, MAE) measures. In addition, SHAP (SHapley Additive exPlanations) was used to ascertain model explainability and clinical relevance. The CardioForest model performed best on all metrics, achieving a test accuracy of 94.95%, a balanced accuracy of 88.31%, and high precision and recall metrics. SHAP analysis confirmed the model's ability to rank the most relevant ECG features, such as QRS duration, in accordance with clinical intuitions, thereby fostering trust and usability in clinical practice. The findings recognize CardioForest as an extremely dependable and interpretable WCT detection model. Being able to offer accurate predictions and transparency through explainability makes it a valuable tool to help cardiologists make timely and well-informed diagnoses, especially for high-stakes and emergency scenarios.

  • 7 authors
·
Sep 30, 2025

Large-scale Training of Foundation Models for Wearable Biosignals

Tracking biosignals is crucial for monitoring wellness and preempting the development of severe medical conditions. Today, wearable devices can conveniently record various biosignals, creating the opportunity to monitor health status without disruption to one's daily routine. Despite widespread use of wearable devices and existing digital biomarkers, the absence of curated data with annotated medical labels hinders the development of new biomarkers to measure common health conditions. In fact, medical datasets are usually small in comparison to other domains, which is an obstacle for developing neural network models for biosignals. To address this challenge, we have employed self-supervised learning using the unlabeled sensor data collected under informed consent from the large longitudinal Apple Heart and Movement Study (AHMS) to train foundation models for two common biosignals: photoplethysmography (PPG) and electrocardiogram (ECG) recorded on Apple Watch. We curated PPG and ECG datasets from AHMS that include data from ~141K participants spanning ~3 years. Our self-supervised learning framework includes participant level positive pair selection, stochastic augmentation module and a regularized contrastive loss optimized with momentum training, and generalizes well to both PPG and ECG modalities. We show that the pre-trained foundation models readily encode information regarding participants' demographics and health conditions. To the best of our knowledge, this is the first study that builds foundation models using large-scale PPG and ECG data collected via wearable consumer devices x2013 prior works have commonly used smaller-size datasets collected in clinical and experimental settings. We believe PPG and ECG foundation models can enhance future wearable devices by reducing the reliance on labeled data and hold the potential to help the users improve their health.

  • 6 authors
·
Dec 8, 2023

Heart Disease Detection using Vision-Based Transformer Models from ECG Images

Heart disease, also known as cardiovascular disease, is a prevalent and critical medical condition characterized by the impairment of the heart and blood vessels, leading to various complications such as coronary artery disease, heart failure, and myocardial infarction. The timely and accurate detection of heart disease is of paramount importance in clinical practice. Early identification of individuals at risk enables proactive interventions, preventive measures, and personalized treatment strategies to mitigate the progression of the disease and reduce adverse outcomes. In recent years, the field of heart disease detection has witnessed notable advancements due to the integration of sophisticated technologies and computational approaches. These include machine learning algorithms, data mining techniques, and predictive modeling frameworks that leverage vast amounts of clinical and physiological data to improve diagnostic accuracy and risk stratification. In this work, we propose to detect heart disease from ECG images using cutting-edge technologies, namely vision transformer models. These models are Google-Vit, Microsoft-Beit, and Swin-Tiny. To the best of our knowledge, this is the initial endeavor concentrating on the detection of heart diseases through image-based ECG data by employing cuttingedge technologies namely, transformer models. To demonstrate the contribution of the proposed framework, the performance of vision transformer models are compared with state-of-the-art studies. Experiment results show that the proposed framework exhibits remarkable classification results.

  • 4 authors
·
Oct 19, 2023

Improved Robustness for Deep Learning-based Segmentation of Multi-Center Myocardial Perfusion MRI Datasets Using Data Adaptive Uncertainty-guided Space-time Analysis

Background. Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software and hardware is an ongoing challenge. Methods. Datasets from 3 medical centers acquired at 3T (n = 150 subjects) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. Results. The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (p = n.s.) whereas it significantly outperformed on the external datasets (p < 0.005 for exD-1 and exD-2). Moreover, the number of image series with "failed" segmentation was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). Conclusions. The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.

  • 11 authors
·
Aug 8, 2024

Medical Concept Representation Learning from Electronic Health Records and its Application on Heart Failure Prediction

Objective: To transform heterogeneous clinical data from electronic health records into clinically meaningful constructed features using data driven method that rely, in part, on temporal relations among data. Materials and Methods: The clinically meaningful representations of medical concepts and patients are the key for health analytic applications. Most of existing approaches directly construct features mapped to raw data (e.g., ICD or CPT codes), or utilize some ontology mapping such as SNOMED codes. However, none of the existing approaches leverage EHR data directly for learning such concept representation. We propose a new way to represent heterogeneous medical concepts (e.g., diagnoses, medications and procedures) based on co-occurrence patterns in longitudinal electronic health records. The intuition behind the method is to map medical concepts that are co-occuring closely in time to similar concept vectors so that their distance will be small. We also derive a simple method to construct patient vectors from the related medical concept vectors. Results: For qualitative evaluation, we study similar medical concepts across diagnosis, medication and procedure. In quantitative evaluation, our proposed representation significantly improves the predictive modeling performance for onset of heart failure (HF), where classification methods (e.g. logistic regression, neural network, support vector machine and K-nearest neighbors) achieve up to 23% improvement in area under the ROC curve (AUC) using this proposed representation. Conclusion: We proposed an effective method for patient and medical concept representation learning. The resulting representation can map relevant concepts together and also improves predictive modeling performance.

  • 4 authors
·
Feb 11, 2016

Neural Codecs as Biosignal Tokenizers

Neurophysiological recordings such as electroencephalography (EEG) offer accessible and minimally invasive means of estimating physiological activity for applications in healthcare, diagnostic screening, and even immersive entertainment. However, these recordings yield high-dimensional, noisy time-series data that typically require extensive pre-processing and handcrafted feature extraction to reveal meaningful information. Recently, there has been a surge of interest in applying representation learning techniques from large pre-trained (foundation) models to effectively decode and interpret biosignals. We discuss the challenges posed for incorporating such methods and introduce BioCodec, an alternative representation learning framework inspired by neural codecs to capture low-level signal characteristics in the form of discrete tokens. Pre-trained on thousands of EEG hours, BioCodec shows efficacy across multiple downstream tasks, ranging from clinical diagnostic tasks and sleep physiology to decoding speech and motor imagery, particularly in low-resource settings. Additionally, we provide a qualitative analysis of codebook usage and estimate the spatial coherence of codebook embeddings from EEG connectivity. Notably, we also document the suitability of our method to other biosignal data, i.e., electromyographic (EMG) signals. Overall, the proposed approach provides a versatile solution for biosignal tokenization that performs competitively with state-of-the-art models. The source code and model checkpoints are shared.

  • 7 authors
·
Oct 10, 2025

An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains

Artificial intelligence (AI) has demonstrated significant potential in ECG analysis and cardiovascular disease assessment. Recently, foundation models have played a remarkable role in advancing medical AI. The development of an ECG foundation model holds the promise of elevating AI-ECG research to new heights. However, building such a model faces several challenges, including insufficient database sample sizes and inadequate generalization across multiple domains. Additionally, there is a notable performance gap between single-lead and multi-lead ECG analyses. We introduced an ECG Foundation Model (ECGFounder), a general-purpose model that leverages real-world ECG annotations from cardiology experts to broaden the diagnostic capabilities of ECG analysis. ECGFounder was trained on over 10 million ECGs with 150 label categories from the Harvard-Emory ECG Database, enabling comprehensive cardiovascular disease diagnosis through ECG analysis. The model is designed to be both an effective out-of-the-box solution, and a to be fine-tunable for downstream tasks, maximizing usability. Importantly, we extended its application to lower rank ECGs, and arbitrary single-lead ECGs in particular. ECGFounder is applicable to supporting various downstream tasks in mobile monitoring scenarios. Experimental results demonstrate that ECGFounder achieves expert-level performance on internal validation sets, with AUROC exceeding 0.95 for eighty diagnoses. It also shows strong classification performance and generalization across various diagnoses on external validation sets. When fine-tuned, ECGFounder outperforms baseline models in demographic analysis, clinical event detection, and cross-modality cardiac rhythm diagnosis. The trained model and data will be publicly released upon publication through the bdsp.io. Our code is available at https://github.com/bdsp-core/ECGFounder

  • 9 authors
·
Oct 5, 2024

Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals

Large language models (LLMs) have captured significant interest from both academia and industry due to their impressive performance across various textual tasks. However, the potential of LLMs to analyze physiological time-series data remains an emerging research field. Particularly, there is a notable gap in the utilization of LLMs for analyzing wearable biosignals to achieve cuffless blood pressure (BP) measurement, which is critical for the management of cardiovascular diseases. This paper presents the first work to explore the capacity of LLMs to perform cuffless BP estimation based on wearable biosignals. We extracted physiological features from electrocardiogram (ECG) and photoplethysmogram (PPG) signals and designed context-enhanced prompts by combining these features with BP domain knowledge and user information. Subsequently, we adapted LLMs to BP estimation tasks through fine-tuning. To evaluate the proposed approach, we conducted assessments of ten advanced LLMs using a comprehensive public dataset of wearable biosignals from 1,272 participants. The experimental results demonstrate that the optimally fine-tuned LLM significantly surpasses conventional task-specific baselines, achieving an estimation error of 0.00 pm 9.25 mmHg for systolic BP and 1.29 pm 6.37 mmHg for diastolic BP. Notably, the ablation studies highlight the benefits of our context enhancement strategy, leading to an 8.9% reduction in mean absolute error for systolic BP estimation. This paper pioneers the exploration of LLMs for cuffless BP measurement, providing a potential solution to enhance the accuracy of cuffless BP measurement.

  • 8 authors
·
Jun 26, 2024

CLARA: Clinical Report Auto-completion

Generating clinical reports from raw recordings such as X-rays and electroencephalogram (EEG) is an essential and routine task for doctors. However, it is often time-consuming to write accurate and detailed reports. Most existing methods try to generate the whole reports from the raw input with limited success because 1) generated reports often contain errors that need manual review and correction, 2) it does not save time when doctors want to write additional information into the report, and 3) the generated reports are not customized based on individual doctors' preference. We propose {\it CL}inic{\it A}l {\it R}eport {\it A}uto-completion (CLARA), an interactive method that generates reports in a sentence by sentence fashion based on doctors' anchor words and partially completed sentences. CLARA searches for most relevant sentences from existing reports as the template for the current report. The retrieved sentences are sequentially modified by combining with the input feature representations to create the final report. In our experimental evaluation, CLARA achieved 0.393 CIDEr and 0.248 BLEU-4 on X-ray reports and 0.482 CIDEr and 0.491 BLEU-4 for EEG reports for sentence-level generation, which is up to 35% improvement over the best baseline. Also via our qualitative evaluation, CLARA is shown to produce reports which have a significantly higher level of approval by doctors in a user study (3.74 out of 5 for CLARA vs 2.52 out of 5 for the baseline).

  • 5 authors
·
Feb 26, 2020

UniCoMTE: A Universal Counterfactual Framework for Explaining Time-Series Classifiers on ECG Data

Machine learning models, particularly deep neural networks, have demonstrated strong performance in classifying complex time series data. However, their black-box nature limits trust and adoption, especially in high-stakes domains such as healthcare. To address this challenge, we introduce UniCoMTE, a model-agnostic framework for generating counterfactual explanations for multivariate time series classifiers. The framework identifies temporal features that most heavily influence a model's prediction by modifying the input sample and assessing its impact on the model's prediction. UniCoMTE is compatible with a wide range of model architectures and operates directly on raw time series inputs. In this study, we evaluate UniCoMTE's explanations on a time series ECG classifier. We quantify explanation quality by comparing our explanations' comprehensibility to comprehensibility of established techniques (LIME and SHAP) and assessing their generalizability to similar samples. Furthermore, clinical utility is assessed through a questionnaire completed by medical experts who review counterfactual explanations presented alongside original ECG samples. Results show that our approach produces concise, stable, and human-aligned explanations that outperform existing methods in both clarity and applicability. By linking model predictions to meaningful signal patterns, the framework advances the interpretability of deep learning models for real-world time series applications.

  • 6 authors
·
Dec 18, 2025

Contrast Everything: A Hierarchical Contrastive Framework for Medical Time-Series

Contrastive representation learning is crucial in medical time series analysis as it alleviates dependency on labor-intensive, domain-specific, and scarce expert annotations. However, existing contrastive learning methods primarily focus on one single data level, which fails to fully exploit the intricate nature of medical time series. To address this issue, we present COMET, an innovative hierarchical framework that leverages data consistencies at all inherent levels in medical time series. Our meticulously designed model systematically captures data consistency from four potential levels: observation, sample, trial, and patient levels. By developing contrastive loss at multiple levels, we can learn effective representations that preserve comprehensive data consistency, maximizing information utilization in a self-supervised manner. We conduct experiments in the challenging patient-independent setting. We compare COMET against six baselines using three diverse datasets, which include ECG signals for myocardial infarction and EEG signals for Alzheimer's and Parkinson's diseases. The results demonstrate that COMET consistently outperforms all baselines, particularly in setup with 10% and 1% labeled data fractions across all datasets. These results underscore the significant impact of our framework in advancing contrastive representation learning techniques for medical time series. The source code is available at https://github.com/DL4mHealth/COMET.

  • 4 authors
·
Oct 21, 2023

Homogenized C. elegans Neural Activity and Connectivity Data

There is renewed interest in modeling and understanding the nervous system of the nematode Caenorhabditis elegans (C. elegans), as this small model system provides a path to bridge the gap between nervous system structure (connectivity) and function (physiology). However, existing physiology datasets, whether involving passive recording or stimulation, are in distinct formats, and connectome datasets require preprocessing before analysis can commence. Here we compile and homogenize datasets of neural activity and connectivity. Our neural activity dataset is derived from 11 C. elegans neuroimaging experiments, while our connectivity dataset is compiled from 9 connectome annotations based on 3 primary electron microscopy studies and 1 signal propagation study. Physiology datasets, collected under varying protocols, measure calcium fluorescence in labeled subsets of the worm's 300 neurons. Our preprocessing pipeline standardizes these datasets by consistently ordering labeled neurons and resampling traces to a common sampling rate, yielding recordings from approximately 900 worms and 250 uniquely labeled neurons. The connectome datasets, collected from electron microscopy reconstructions, represent the entire nervous system as a graph of connections. Our collection is accessible on HuggingFace, facilitating analysis of the structure-function relationship in biology using modern neural network architectures and enabling cross-lab and cross-animal comparisons.

  • 4 authors
·
Nov 18, 2024

MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report

In this paper, we introduce a novel Multi-Modal Contrastive Pre-training Framework that synergistically combines X-rays, electrocardiograms (ECGs), and radiology/cardiology reports. Our approach leverages transformers to encode these diverse modalities into a unified representation space, aiming to enhance diagnostic accuracy and facilitate comprehensive patient assessments. We utilize LoRA-Peft to significantly reduce trainable parameters in the LLM and incorporate recent linear attention dropping strategy in the Vision Transformer(ViT) for smoother attention. Furthermore, we provide novel multimodal attention explanations and retrieval for our model. To the best of our knowledge, we are the first to propose an integrated model that combines X-ray, ECG, and Radiology/Cardiology Report with this approach. By utilizing contrastive loss, MoRE effectively aligns modality-specific features into a coherent embedding, which supports various downstream tasks such as zero-shot classification and multimodal retrieval. Employing our proposed methodology, we achieve state-of-the-art (SOTA) on the Mimic-IV, CheXpert, Edema Severity, and PtbXl downstream datasets, surpassing existing multimodal approaches. Our proposed framework shows significant improvements in capturing intricate inter-modal relationships and its robustness in medical diagnosis that establishes a framework for future research in multimodal learning in the healthcare sector.

  • 4 authors
·
Oct 21, 2024

Benchmarking ERP Analysis: Manual Features, Deep Learning, and Foundation Models

Event-related potential (ERP), a specialized paradigm of electroencephalographic (EEG), reflects neurological responses to external stimuli or events, generally associated with the brain's processing of specific cognitive tasks. ERP plays a critical role in cognitive analysis, the detection of neurological diseases, and the assessment of psychological states. Recent years have seen substantial advances in deep learning-based methods for spontaneous EEG and other non-time-locked task-related EEG signals. However, their effectiveness on ERP data remains underexplored, and many existing ERP studies still rely heavily on manually extracted features. In this paper, we conduct a comprehensive benchmark study that systematically compares traditional manual features (followed by a linear classifier), deep learning models, and pre-trained EEG foundation models for ERP analysis. We establish a unified data preprocessing and training pipeline and evaluate these approaches on two representative tasks, ERP stimulus classification and ERP-based brain disease detection, across 12 publicly available datasets. Furthermore, we investigate various patch-embedding strategies within advanced Transformer architectures to identify embedding designs that better suit ERP data. Our study provides a landmark framework to guide method selection and tailored model design for future ERP analysis. The code is available at https://github.com/DL4mHealth/ERP-Benchmark.

  • 5 authors
·
Jan 2

Cross-Modality Investigation on WESAD Stress Classification

Deep learning's growing prevalence has driven its widespread use in healthcare, where AI and sensor advancements enhance diagnosis, treatment, and monitoring. In mobile health, AI-powered tools enable early diagnosis and continuous monitoring of conditions like stress. Wearable technologies and multimodal physiological data have made stress detection increasingly viable, but model efficacy depends on data quality, quantity, and modality. This study develops transformer models for stress detection using the WESAD dataset, training on electrocardiograms (ECG), electrodermal activity (EDA), electromyography (EMG), respiration rate (RESP), temperature (TEMP), and 3-axis accelerometer (ACC) signals. The results demonstrate the effectiveness of single-modality transformers in analyzing physiological signals, achieving state-of-the-art performance with accuracy, precision and recall values in the range of 99.73% to 99.95% for stress detection. Furthermore, this study explores cross-modal performance and also explains the same using 2D visualization of the learned embedding space and quantitative analysis based on data variance. Despite the large body of work on stress detection and monitoring, the robustness and generalization of these models across different modalities has not been explored. This research represents one of the initial efforts to interpret embedding spaces for stress detection, providing valuable information on cross-modal performance.

  • 2 authors
·
Feb 25, 2025

MODMA dataset: a Multi-modal Open Dataset for Mental-disorder Analysis

According to the World Health Organization, the number of mental disorder patients, especially depression patients, has grown rapidly and become a leading contributor to the global burden of disease. However, the present common practice of depression diagnosis is based on interviews and clinical scales carried out by doctors, which is not only labor-consuming but also time-consuming. One important reason is due to the lack of physiological indicators for mental disorders. With the rising of tools such as data mining and artificial intelligence, using physiological data to explore new possible physiological indicators of mental disorder and creating new applications for mental disorder diagnosis has become a new research hot topic. However, good quality physiological data for mental disorder patients are hard to acquire. We present a multi-modal open dataset for mental-disorder analysis. The dataset includes EEG and audio data from clinically depressed patients and matching normal controls. All our patients were carefully diagnosed and selected by professional psychiatrists in hospitals. The EEG dataset includes not only data collected using traditional 128-electrodes mounted elastic cap, but also a novel wearable 3-electrode EEG collector for pervasive applications. The 128-electrodes EEG signals of 53 subjects were recorded as both in resting state and under stimulation; the 3-electrode EEG signals of 55 subjects were recorded in resting state; the audio data of 52 subjects were recorded during interviewing, reading, and picture description. We encourage other researchers in the field to use it for testing their methods of mental-disorder analysis.

  • 26 authors
·
Feb 20, 2020

CE-SSL: Computation-Efficient Semi-Supervised Learning for ECG-based Cardiovascular Diseases Detection

The label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing the computational efficiency during model training. Here, we propose a computation-efficient semi-supervised learning paradigm (CE-SSL) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream datasets demonstrate that CE-SSL not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision. Code and Supplementary Materials are available at https://github.com/KAZABANA/CE-SSL

  • 7 authors
·
Jun 20, 2024

Detailed Annotations of Chest X-Rays via CT Projection for Report Understanding

In clinical radiology reports, doctors capture important information about the patient's health status. They convey their observations from raw medical imaging data about the inner structures of a patient. As such, formulating reports requires medical experts to possess wide-ranging knowledge about anatomical regions with their normal, healthy appearance as well as the ability to recognize abnormalities. This explicit grasp on both the patient's anatomy and their appearance is missing in current medical image-processing systems as annotations are especially difficult to gather. This renders the models to be narrow experts e.g. for identifying specific diseases. In this work, we recover this missing link by adding human anatomy into the mix and enable the association of content in medical reports to their occurrence in associated imagery (medical phrase grounding). To exploit anatomical structures in this scenario, we present a sophisticated automatic pipeline to gather and integrate human bodily structures from computed tomography datasets, which we incorporate in our PAXRay: A Projected dataset for the segmentation of Anatomical structures in X-Ray data. Our evaluation shows that methods that take advantage of anatomical information benefit heavily in visually grounding radiologists' findings, as our anatomical segmentations allow for up to absolute 50% better grounding results on the OpenI dataset as compared to commonly used region proposals. The PAXRay dataset is available at https://constantinseibold.github.io/paxray/.

  • 10 authors
·
Oct 7, 2022

DDXPlus: A New Dataset For Automatic Medical Diagnosis

There has been a rapidly growing interest in Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the machine learning research literature, aiming to assist doctors in telemedicine services. These systems are designed to interact with patients, collect evidence about their symptoms and relevant antecedents, and possibly make predictions about the underlying diseases. Doctors would review the interactions, including the evidence and the predictions, collect if necessary additional information from patients, before deciding on next steps. Despite recent progress in this area, an important piece of doctors' interactions with patients is missing in the design of these systems, namely the differential diagnosis. Its absence is largely due to the lack of datasets that include such information for models to train on. In this work, we present a large-scale synthetic dataset of roughly 1.3 million patients that includes a differential diagnosis, along with the ground truth pathology, symptoms and antecedents for each patient. Unlike existing datasets which only contain binary symptoms and antecedents, this dataset also contains categorical and multi-choice symptoms and antecedents useful for efficient data collection. Moreover, some symptoms are organized in a hierarchy, making it possible to design systems able to interact with patients in a logical way. As a proof-of-concept, we extend two existing AD and ASD systems to incorporate the differential diagnosis, and provide empirical evidence that using differentials as training signals is essential for the efficiency of such systems or for helping doctors better understand the reasoning of those systems.

  • 5 authors
·
May 18, 2022

Monash University, UEA, UCR Time Series Extrinsic Regression Archive

Time series research has gathered lots of interests in the last decade, especially for Time Series Classification (TSC) and Time Series Forecasting (TSF). Research in TSC has greatly benefited from the University of California Riverside and University of East Anglia (UCR/UEA) Time Series Archives. On the other hand, the advancement in Time Series Forecasting relies on time series forecasting competitions such as the Makridakis competitions, NN3 and NN5 Neural Network competitions, and a few Kaggle competitions. Each year, thousands of papers proposing new algorithms for TSC and TSF have utilized these benchmarking archives. These algorithms are designed for these specific problems, but may not be useful for tasks such as predicting the heart rate of a person using photoplethysmogram (PPG) and accelerometer data. We refer to this problem as Time Series Extrinsic Regression (TSER), where we are interested in a more general methodology of predicting a single continuous value, from univariate or multivariate time series. This prediction can be from the same time series or not directly related to the predictor time series and does not necessarily need to be a future value or depend heavily on recent values. To the best of our knowledge, research into TSER has received much less attention in the time series research community and there are no models developed for general time series extrinsic regression problems. Most models are developed for a specific problem. Therefore, we aim to motivate and support the research into TSER by introducing the first TSER benchmarking archive. This archive contains 19 datasets from different domains, with varying number of dimensions, unequal length dimensions, and missing values. In this paper, we introduce the datasets in this archive and did an initial benchmark on existing models.

  • 4 authors
·
Jun 19, 2020

MultiMed: Massively Multimodal and Multitask Medical Understanding

Biomedical data is inherently multimodal, consisting of electronic health records, medical imaging, digital pathology, genome sequencing, wearable sensors, and more. The application of artificial intelligence tools to these multifaceted sensing technologies has the potential to revolutionize the prognosis, diagnosis, and management of human health and disease. However, current approaches to biomedical AI typically only train and evaluate with one or a small set of medical modalities and tasks. This limitation hampers the development of comprehensive tools that can leverage the rich interconnected information across many heterogeneous biomedical sensors. To address this challenge, we present MultiMed, a benchmark designed to evaluate and enable large-scale learning across a wide spectrum of medical modalities and tasks. MultiMed consists of 2.56 million samples across ten medical modalities such as medical reports, pathology, genomics, and protein data, and is structured into eleven challenging tasks, including disease prognosis, protein structure prediction, and medical question answering. Using MultiMed, we conduct comprehensive experiments benchmarking state-of-the-art unimodal, multimodal, and multitask models. Our analysis highlights the advantages of training large-scale medical models across many related modalities and tasks. Moreover, MultiMed enables studies of generalization across related medical concepts, robustness to real-world noisy data and distribution shifts, and novel modality combinations to improve prediction performance. MultiMed will be publicly available and regularly updated and welcomes inputs from the community.

  • 2 authors
·
Aug 22, 2024

A Corpus for Detecting High-Context Medical Conditions in Intensive Care Patient Notes Focusing on Frequently Readmitted Patients

A crucial step within secondary analysis of electronic health records (EHRs) is to identify the patient cohort under investigation. While EHRs contain medical billing codes that aim to represent the conditions and treatments patients may have, much of the information is only present in the patient notes. Therefore, it is critical to develop robust algorithms to infer patients' conditions and treatments from their written notes. In this paper, we introduce a dataset for patient phenotyping, a task that is defined as the identification of whether a patient has a given medical condition (also referred to as clinical indication or phenotype) based on their patient note. Nursing Progress Notes and Discharge Summaries from the Intensive Care Unit of a large tertiary care hospital were manually annotated for the presence of several high-context phenotypes relevant to treatment and risk of re-hospitalization. This dataset contains 1102 Discharge Summaries and 1000 Nursing Progress Notes. Each Discharge Summary and Progress Note has been annotated by at least two expert human annotators (one clinical researcher and one resident physician). Annotated phenotypes include treatment non-adherence, chronic pain, advanced/metastatic cancer, as well as 10 other phenotypes. This dataset can be utilized for academic and industrial research in medicine and computer science, particularly within the field of medical natural language processing.

  • 10 authors
·
Mar 6, 2020

ALPHA: AnomaLous Physiological Health Assessment Using Large Language Models

This study concentrates on evaluating the efficacy of Large Language Models (LLMs) in healthcare, with a specific focus on their application in personal anomalous health monitoring. Our research primarily investigates the capabilities of LLMs in interpreting and analyzing physiological data obtained from FDA-approved devices. We conducted an extensive analysis using anomalous physiological data gathered in a simulated low-air-pressure plateau environment. This allowed us to assess the precision and reliability of LLMs in understanding and evaluating users' health status with notable specificity. Our findings reveal that LLMs exhibit exceptional performance in determining medical indicators, including a Mean Absolute Error (MAE) of less than 1 beat per minute for heart rate and less than 1% for oxygen saturation (SpO2). Furthermore, the Mean Absolute Percentage Error (MAPE) for these evaluations remained below 1%, with the overall accuracy of health assessments surpassing 85%. In image analysis tasks, such as interpreting photoplethysmography (PPG) data, our specially adapted GPT models demonstrated remarkable proficiency, achieving less than 1 bpm error in cycle count and 7.28 MAE for heart rate estimation. This study highlights LLMs' dual role as health data analysis tools and pivotal elements in advanced AI health assistants, offering personalized health insights and recommendations within the future health assistant framework.

  • 7 authors
·
Nov 21, 2023

SynthRAD2023 Grand Challenge dataset: generating synthetic CT for radiotherapy

Purpose: Medical imaging has become increasingly important in diagnosing and treating oncological patients, particularly in radiotherapy. Recent advances in synthetic computed tomography (sCT) generation have increased interest in public challenges to provide data and evaluation metrics for comparing different approaches openly. This paper describes a dataset of brain and pelvis computed tomography (CT) images with rigidly registered CBCT and MRI images to facilitate the development and evaluation of sCT generation for radiotherapy planning. Acquisition and validation methods: The dataset consists of CT, CBCT, and MRI of 540 brains and 540 pelvic radiotherapy patients from three Dutch university medical centers. Subjects' ages ranged from 3 to 93 years, with a mean age of 60. Various scanner models and acquisition settings were used across patients from the three data-providing centers. Details are available in CSV files provided with the datasets. Data format and usage notes: The data is available on Zenodo (https://doi.org/10.5281/zenodo.7260705) under the SynthRAD2023 collection. The images for each subject are available in nifti format. Potential applications: This dataset will enable the evaluation and development of image synthesis algorithms for radiotherapy purposes on a realistic multi-center dataset with varying acquisition protocols. Synthetic CT generation has numerous applications in radiation therapy, including diagnosis, treatment planning, treatment monitoring, and surgical planning.

  • 9 authors
·
Mar 28, 2023

Crowdsourcing Dermatology Images with Google Search Ads: Creating a Real-World Skin Condition Dataset

Background: Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education, and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods: We used Google Search advertisements to invite contributions to an open access dataset of images of dermatology conditions, demographic and symptom information. With informed contributor consent, we describe and release this dataset containing 10,408 images from 5,033 contributions from internet users in the United States over 8 months starting March 2023. The dataset includes dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and Monk Skin Tone (eMST) labels for the images. Results: We received a median of 22 submissions/day (IQR 14-30). Female (66.72%) and younger (52% < age 40) contributors had a higher representation in the dataset compared to the US population, and 32.6% of contributors reported a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Dermatologist confidence in assigning a differential diagnosis increased with the number of available variables, and showed a weaker correlation with image sharpness (Spearman's P values <0.001 and 0.01 respectively). Most contributions were short-duration (54% with onset < 7 days ago ) and 89% were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset. The dataset is available at github.com/google-research-datasets/scin . Conclusion: Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions.

  • 20 authors
·
Feb 28, 2024

Whole Heart 3D+T Representation Learning Through Sparse 2D Cardiac MR Images

Cardiac Magnetic Resonance (CMR) imaging serves as the gold-standard for evaluating cardiac morphology and function. Typically, a multi-view CMR stack, covering short-axis (SA) and 2/3/4-chamber long-axis (LA) views, is acquired for a thorough cardiac assessment. However, efficiently streamlining the complex, high-dimensional 3D+T CMR data and distilling compact, coherent representation remains a challenge. In this work, we introduce a whole-heart self-supervised learning framework that utilizes masked imaging modeling to automatically uncover the correlations between spatial and temporal patches throughout the cardiac stacks. This process facilitates the generation of meaningful and well-clustered heart representations without relying on the traditionally required, and often costly, labeled data. The learned heart representation can be directly used for various downstream tasks. Furthermore, our method demonstrates remarkable robustness, ensuring consistent representations even when certain CMR planes are missing/flawed. We train our model on 14,000 unlabeled CMR data from UK BioBank and evaluate it on 1,000 annotated data. The proposed method demonstrates superior performance to baselines in tasks that demand comprehensive 3D+T cardiac information, e.g. cardiac phenotype (ejection fraction and ventricle volume) prediction and multi-plane/multi-frame CMR segmentation, highlighting its effectiveness in extracting comprehensive cardiac features that are both anatomically and pathologically relevant.

  • 6 authors
·
Jun 1, 2024

ECHOPulse: ECG controlled echocardio-grams video generation

Echocardiography (ECHO) is essential for cardiac assessments, but its video quality and interpretation heavily relies on manual expertise, leading to inconsistent results from clinical and portable devices. ECHO video generation offers a solution by improving automated monitoring through synthetic data and generating high-quality videos from routine health data. However, existing models often face high computational costs, slow inference, and rely on complex conditional prompts that require experts' annotations. To address these challenges, we propose ECHOPULSE, an ECG-conditioned ECHO video generation model. ECHOPULSE introduces two key advancements: (1) it accelerates ECHO video generation by leveraging VQ-VAE tokenization and masked visual token modeling for fast decoding, and (2) it conditions on readily accessible ECG signals, which are highly coherent with ECHO videos, bypassing complex conditional prompts. To the best of our knowledge, this is the first work to use time-series prompts like ECG signals for ECHO video generation. ECHOPULSE not only enables controllable synthetic ECHO data generation but also provides updated cardiac function information for disease monitoring and prediction beyond ECG alone. Evaluations on three public and private datasets demonstrate state-of-the-art performance in ECHO video generation across both qualitative and quantitative measures. Additionally, ECHOPULSE can be easily generalized to other modality generation tasks, such as cardiac MRI, fMRI, and 3D CT generation. Demo can seen from https://github.com/levyisthebest/ECHOPulse_Prelease.

  • 12 authors
·
Oct 4, 2024

Foresight -- Generative Pretrained Transformer (GPT) for Modelling of Patient Timelines using EHRs

Background: Electronic Health Records hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Existing approaches focus mostly on structured data and a subset of single-domain outcomes. We explore how temporal modelling of patients from free text and structured data, using deep generative transformers can be used to forecast a wide range of future disorders, substances, procedures or findings. Methods: We present Foresight, a novel transformer-based pipeline that uses named entity recognition and linking tools to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, substances, procedures and findings. We processed the entire free-text portion from three different hospital datasets totalling 811336 patients covering both physical and mental health. Findings: On tests in two UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 0.68, 0.76 and 0.88 was achieved for forecasting the next disorder in a patient timeline, while precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by five clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. As a generative model, it can forecast follow-on biomedical concepts for as many steps as required. Interpretation: Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials and clinical research to study the progression of disorders, simulate interventions and counterfactuals, and educational purposes.

  • 12 authors
·
Dec 13, 2022

Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-making: A Systematic Review

Background: Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. Methodology: After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: 1) medical note classification, 2) clinical entity recognition, 3) text summarisation, 4) deep learning (DL) and transfer learning architecture, 5) information extraction, 6) Medical language translation and 7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Result and Discussion: EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. Conclusion: We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.

  • 8 authors
·
Jun 22, 2023

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases

The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals' Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely "ChestX-ray8", which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based "reading chest X-rays" (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems. Data download link: https://nihcc.app.box.com/v/ChestXray-NIHCC

  • 6 authors
·
May 5, 2017

A Systematic Literature Review of Automated ICD Coding and Classification Systems using Discharge Summaries

Codification of free-text clinical narratives have long been recognised to be beneficial for secondary uses such as funding, insurance claim processing and research. The current scenario of assigning codes is a manual process which is very expensive, time-consuming and error prone. In recent years, many researchers have studied the use of Natural Language Processing (NLP), related Machine Learning (ML) and Deep Learning (DL) methods and techniques to resolve the problem of manual coding of clinical narratives and to assist human coders to assign clinical codes more accurately and efficiently. This systematic literature review provides a comprehensive overview of automated clinical coding systems that utilises appropriate NLP, ML and DL methods and techniques to assign ICD codes to discharge summaries. We have followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines and conducted a comprehensive search of publications from January, 2010 to December 2020 in four academic databases- PubMed, ScienceDirect, Association for Computing Machinery(ACM) Digital Library, and the Association for Computational Linguistics(ACL) Anthology. We reviewed 7,556 publications; 38 met the inclusion criteria. This review identified: datasets having discharge summaries; NLP techniques along with some other data extraction processes, different feature extraction and embedding techniques. To measure the performance of classification methods, different evaluation metrics are used. Lastly, future research directions are provided to scholars who are interested in automated ICD code assignment. Efforts are still required to improve ICD code prediction accuracy, availability of large-scale de-identified clinical corpora with the latest version of the classification system. This can be a platform to guide and share knowledge with the less experienced coders and researchers.

  • 3 authors
·
Jul 11, 2021

Omni-iEEG: A Large-Scale, Comprehensive iEEG Dataset and Benchmark for Epilepsy Research

Epilepsy affects over 50 million people worldwide, and one-third of patients suffer drug-resistant seizures where surgery offers the best chance of seizure freedom. Accurate localization of the epileptogenic zone (EZ) relies on intracranial EEG (iEEG). Clinical workflows, however, remain constrained by labor-intensive manual review. At the same time, existing data-driven approaches are typically developed on single-center datasets that are inconsistent in format and metadata, lack standardized benchmarks, and rarely release pathological event annotations, creating barriers to reproducibility, cross-center validation, and clinical relevance. With extensive efforts to reconcile heterogeneous iEEG formats, metadata, and recordings across publicly available sources, we present Omni-iEEG, a large-scale, pre-surgical iEEG resource comprising 302 patients and 178 hours of high-resolution recordings. The dataset includes harmonized clinical metadata such as seizure onset zones, resections, and surgical outcomes, all validated by board-certified epileptologists. In addition, Omni-iEEG provides over 36K expert-validated annotations of pathological events, enabling robust biomarker studies. Omni-iEEG serves as a bridge between machine learning and epilepsy research. It defines clinically meaningful tasks with unified evaluation metrics grounded in clinical priors, enabling systematic evaluation of models in clinically relevant settings. Beyond benchmarking, we demonstrate the potential of end-to-end modeling on long iEEG segments and highlight the transferability of representations pretrained on non-neurophysiological domains. Together, these contributions establish Omni-iEEG as a foundation for reproducible, generalizable, and clinically translatable epilepsy research. The project page with dataset and code links is available at omni-ieeg.github.io/omni-ieeg.

  • 12 authors
·
Feb 17

Alljoined-1.6M: A Million-Trial EEG-Image Dataset for Evaluating Affordable Brain-Computer Interfaces

We present a new large-scale electroencephalography (EEG) dataset as part of the THINGS initiative, comprising over 1.6 million visual stimulus trials collected from 20 participants, and totaling more than twice the size of the most popular current benchmark dataset, THINGS-EEG2. Crucially, our data was recorded using a 32-channel consumer-grade wet electrode system costing ~$2.2k, around 27x cheaper than research-grade EEG systems typically used in cognitive neuroscience labs. Our work is one of the first open-source, large-scale EEG resource designed to closely reflect the quality of hardware that is practical to deploy in real-world, downstream applications of brain-computer interfaces (BCIs). We aim to explore the specific question of whether deep neural network-based BCI research and semantic decoding methods can be effectively conducted with such affordable systems, filling an important gap in current literature that is extremely relevant for future research. In our analysis, we not only demonstrate that decoding of high-level semantic information from EEG of visualized images is possible at consumer-grade hardware, but also that our data can facilitate effective EEG-to-Image reconstruction even despite significantly lower signal-to-noise ratios. In addition to traditional benchmarks, we also conduct analyses of EEG-to-Image models that demonstrate log-linear decoding performance with increasing data volume on our data, and discuss the trade-offs between hardware cost, signal fidelity, and the scale of data collection efforts in increasing the size and utility of currently available datasets. Our contributions aim to pave the way for large-scale, cost-effective EEG research with widely accessible equipment, and position our dataset as a unique resource for the democratization and development of effective deep neural models of visual cognition.

  • 8 authors
·
Aug 25, 2025