- Erasing Undesirable Concepts in Diffusion Models with Adversarial Preservation Diffusion models excel at generating visually striking content from text but can inadvertently produce undesirable or harmful content when trained on unfiltered internet data. A practical solution is to selectively removing target concepts from the model, but this may impact the remaining concepts. Prior approaches have tried to balance this by introducing a loss term to preserve neutral content or a regularization term to minimize changes in the model parameters, yet resolving this trade-off remains challenging. In this work, we propose to identify and preserving concepts most affected by parameter changes, termed as adversarial concepts. This approach ensures stable erasure with minimal impact on the other concepts. We demonstrate the effectiveness of our method using the Stable Diffusion model, showing that it outperforms state-of-the-art erasure methods in eliminating unwanted content while maintaining the integrity of other unrelated elements. Our code is available at https://github.com/tuananhbui89/Erasing-Adversarial-Preservation. 7 authors · Oct 20, 2024
- Read Between the Lines: A Benchmark for Uncovering Political Bias in Bangla News Articles Detecting media bias is crucial, specifically in the South Asian region. Despite this, annotated datasets and computational studies for Bangla political bias research remain scarce. Crucially because, political stance detection in Bangla news requires understanding of linguistic cues, cultural context, subtle biases, rhetorical strategies, code-switching, implicit sentiment, and socio-political background. To address this, we introduce the first benchmark dataset of 200 politically significant and highly debated Bangla news articles, labeled for government-leaning, government-critique, and neutral stances, alongside diagnostic analyses for evaluating large language models (LLMs). Our comprehensive evaluation of 28 proprietary and open-source LLMs shows strong performance in detecting government-critique content (F1 up to 0.83) but substantial difficulty with neutral articles (F1 as low as 0.00). Models also tend to over-predict government-leaning stances, often misinterpreting ambiguous narratives. This dataset and its associated diagnostics provide a foundation for advancing stance detection in Bangla media research and offer insights for improving LLM performance in low-resource languages. 6 authors · Oct 4, 2025
3 Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evaluation and Beyond Logical reasoning consistently plays a fundamental and significant role in the domains of knowledge engineering and artificial intelligence. Recently, Large Language Models (LLMs) have emerged as a noteworthy innovation in natural language processing (NLP), exhibiting impressive achievements across various classic NLP tasks. However, the question of whether LLMs can effectively address the task of logical reasoning, which requires gradual cognitive inference similar to human intelligence, remains unanswered. To this end, we aim to bridge this gap and provide comprehensive evaluations in this paper. Firstly, to offer systematic evaluations, we select fifteen typical logical reasoning datasets and organize them into deductive, inductive, abductive and mixed-form reasoning settings. Considering the comprehensiveness of evaluations, we include three representative LLMs (i.e., text-davinci-003, ChatGPT and BARD) and evaluate them on all selected datasets under zero-shot, one-shot and three-shot settings. Secondly, different from previous evaluations relying only on simple metrics (e.g., accuracy), we propose fine-level evaluations from objective and subjective manners, covering both answers and explanations. Additionally, to uncover the logical flaws of LLMs, problematic cases will be attributed to five error types from two dimensions, i.e., evidence selection process and reasoning process. Thirdly, to avoid the influences of knowledge bias and purely focus on benchmarking the logical reasoning capability of LLMs, we propose a new dataset with neutral content. It contains 3,000 samples and covers deductive, inductive and abductive settings. Based on the in-depth evaluations, this paper finally forms a general evaluation scheme of logical reasoning capability from six dimensions. It reflects the pros and cons of LLMs and gives guiding directions for future works. 6 authors · Jun 16, 2023
- RideKE: Leveraging Low-Resource, User-Generated Twitter Content for Sentiment and Emotion Detection in Kenyan Code-Switched Dataset Social media has become a crucial open-access platform for individuals to express opinions and share experiences. However, leveraging low-resource language data from Twitter is challenging due to scarce, poor-quality content and the major variations in language use, such as slang and code-switching. Identifying tweets in these languages can be difficult as Twitter primarily supports high-resource languages. We analyze Kenyan code-switched data and evaluate four state-of-the-art (SOTA) transformer-based pretrained models for sentiment and emotion classification, using supervised and semi-supervised methods. We detail the methodology behind data collection and annotation, and the challenges encountered during the data curation phase. Our results show that XLM-R outperforms other models; for sentiment analysis, XLM-R supervised model achieves the highest accuracy (69.2\%) and F1 score (66.1\%), XLM-R semi-supervised (67.2\% accuracy, 64.1\% F1 score). In emotion analysis, DistilBERT supervised leads in accuracy (59.8\%) and F1 score (31\%), mBERT semi-supervised (accuracy (59\% and F1 score 26.5\%). AfriBERTa models show the lowest accuracy and F1 scores. All models tend to predict neutral sentiment, with Afri-BERT showing the highest bias and unique sensitivity to empathy emotion. https://github.com/NEtori21/Ride_hailing 2 authors · Feb 10, 2025
- Star formation histories and gas content limits of three ultra-faint dwarfs on the periphery of M31 We present Hubble Space Telescope (HST) imaging of Pegasus V and Pisces VII, along with a re-analysis of the archival imaging of Pegasus W, and Jansky Very Large Array (VLA) neutral gas (HI) observations of all three. These three ultra-faint dwarfs (UFDs) are all within the Local Group in the approximate direction of M31. The VLA observations place stringent upper limits on their HI content, with all having M_HI < 10^4;M_odot. As the red giant branches of these UFDs are sparsely populated, we determined distances from the HST photometry of horizontal branch (HB) stars in comparison to a fiducial HB population (from M92), with all three falling in the range 0.7-1 Mpc. Using a new Python-based star formation history (SFH) fitting code (based on StarFISH), we derive SFHs of all three UFDs. As found previously, the best fit SFH for Pegasus W includes significant star formation well beyond the end of reionization, while the SFHs calculated for Pegasus V and Pisces VII are consistent with them having quenched shortly after reionization. These findings for the latter two objects indicate that, like those in the vicinity of the Milky Way, lower mass UFDs in the vicinity of M31 likely quenched at early times. 12 authors · Aug 1, 2025
- BAN-PL: a Novel Polish Dataset of Banned Harmful and Offensive Content from Wykop.pl web service Since the Internet is flooded with hate, it is one of the main tasks for NLP experts to master automated online content moderation. However, advancements in this field require improved access to publicly available accurate and non-synthetic datasets of social media content. For the Polish language, such resources are very limited. In this paper, we address this gap by presenting a new open dataset of offensive social media content for the Polish language. The dataset comprises content from Wykop.pl, a popular online service often referred to as the "Polish Reddit", reported by users and banned in the internal moderation process. It contains a total of 691,662 posts and comments, evenly divided into two categories: "harmful" and "neutral" ("non-harmful"). The anonymized subset of the BAN-PL dataset consisting on 24,000 pieces (12,000 for each class), along with preprocessing scripts have been made publicly available. Furthermore the paper offers valuable insights into real-life content moderation processes and delves into an analysis of linguistic features and content characteristics of the dataset. Moreover, a comprehensive anonymization procedure has been meticulously described and applied. The prevalent biases encountered in similar datasets, including post-moderation and pre-selection biases, are also discussed. 7 authors · Aug 21, 2023
- How Inclusive Are Wikipedia's Hyperlinks in Articles Covering Polarizing Topics? Wikipedia relies on an extensive review process to verify that the content of each individual page is unbiased and presents a neutral point of view. Less attention has been paid to possible biases in the hyperlink structure of Wikipedia, which has a significant influence on the user's exploration process when visiting more than one page. The evaluation of hyperlink bias is challenging because it depends on the global view rather than the text of individual pages. In this paper, we focus on the influence of the interconnect topology between articles describing complementary aspects of polarizing topics. We introduce a novel measure of exposure to diverse information to quantify users' exposure to different aspects of a topic throughout an entire surfing session, rather than just one click ahead. We apply this measure to six polarizing topics (e.g., gun control and gun right), and we identify cases in which the network topology significantly limits the exposure of users to diverse information on the topic, encouraging users to remain in a knowledge bubble. Our findings demonstrate the importance of evaluating Wikipedia's network structure in addition to the extensive review of individual articles. 3 authors · Jul 16, 2020
- Audio Entailment: Assessing Deductive Reasoning for Audio Understanding Recent literature uses language to build foundation models for audio. These Audio-Language Models (ALMs) are trained on a vast number of audio-text pairs and show remarkable performance in tasks including Text-to-Audio Retrieval, Captioning, and Question Answering. However, their ability to engage in more complex open-ended tasks, like Interactive Question-Answering, requires proficiency in logical reasoning -- a skill not yet benchmarked. We introduce the novel task of Audio Entailment to evaluate an ALM's deductive reasoning ability. This task assesses whether a text description (hypothesis) of audio content can be deduced from an audio recording (premise), with potential conclusions being entailment, neutral, or contradiction, depending on the sufficiency of the evidence. We create two datasets for this task with audio recordings sourced from two audio captioning datasets -- AudioCaps and Clotho -- and hypotheses generated using Large Language Models (LLMs). We benchmark state-of-the-art ALMs and find deficiencies in logical reasoning with both zero-shot and linear probe evaluations. Finally, we propose "caption-before-reason", an intermediate step of captioning that improves the zero-shot and linear-probe performance of ALMs by an absolute 6% and 3%, respectively. 7 authors · Jul 25, 2024
- APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets In hate speech detection, developing training and evaluation datasets across various domains is the critical issue. Whereas, major approaches crawl social media texts and hire crowd-workers to annotate the data. Following this convention often restricts the scope of pejorative expressions to a single domain lacking generalization. Sometimes domain overlap between training corpus and evaluation set overestimate the prediction performance when pretraining language models on low-data language. To alleviate these problems in Korean, we propose APEACH that asks unspecified users to generate hate speech examples followed by minimal post-labeling. We find that APEACH can collect useful datasets that are less sensitive to the lexical overlaps between the pretraining corpus and the evaluation set, thereby properly measuring the model performance. 3 authors · Feb 24, 2022
- Algorithmic Extremism: Examining YouTube's Rabbit Hole of Radicalization The role that YouTube and its behind-the-scenes recommendation algorithm plays in encouraging online radicalization has been suggested by both journalists and academics alike. This study directly quantifies these claims by examining the role that YouTube's algorithm plays in suggesting radicalized content. After categorizing nearly 800 political channels, we were able to differentiate between political schemas in order to analyze the algorithm traffic flows out and between each group. After conducting a detailed analysis of recommendations received by each channel type, we refute the popular radicalization claims. To the contrary, these data suggest that YouTube's recommendation algorithm actively discourages viewers from visiting radicalizing or extremist content. Instead, the algorithm is shown to favor mainstream media and cable news content over independent YouTube channels with slant towards left-leaning or politically neutral channels. Our study thus suggests that YouTube's recommendation algorithm fails to promote inflammatory or radicalized content, as previously claimed by several outlets. 2 authors · Dec 24, 2019
- Can LLMs Speak For Diverse People? Tuning LLMs via Debate to Generate Controllable Controversial Statements Making LLMs speak for different, especially minority groups of people, and generate statements supporting their diverse or even controversial perspectives is critical to creating an inclusive environment. However, existing LLMs lack sufficient controllability to the stance of their generated content, which often contains inconsistent, neutral, or biased statements. In this paper, we improve the controllability of LLMs in generating statements supporting an argument the user defined in the prompt. We find that multi-round debates between two LLMs with opposite stances generate higher-quality and more salient statements for each, which are important training data to improve the controllability of LLMs. Motivated by this, we develop a novel debate & tuning (DEBATUNE) pipeline finetuning LLMs to generate the statements obtained via debate. To examine DEBATUNE, we curate the largest dataset of debate topics so far, which covers 710 controversial topics and corresponding arguments for each topic. Evaluations by the GPT-4 judge with a novel controversy controllability metric show that LLMs' capability of generating diverse perspectives is significantly improved by DEBATUNE. Moreover, such controllability can be generalized to unseen topics, generating high-quality statements supporting controversial arguments. 4 authors · Feb 16, 2024