8 ARGUS: Hallucination and Omission Evaluation in Video-LLMs Video large language models have not yet been widely deployed, largely due to their tendency to hallucinate. Typical benchmarks for Video-LLMs rely simply on multiple-choice questions. Unfortunately, VideoLLMs hallucinate far more aggressively on freeform text generation tasks like video captioning than they do on multiple choice verification tasks. To address this weakness, we propose ARGUS, a VideoLLM benchmark that measures freeform video captioning performance. By comparing VideoLLM outputs to human ground truth captions, ARGUS quantifies dual metrics. First, we measure the rate of hallucinations in the form of incorrect statements about video content or temporal relationships. Second, we measure the rate at which the model omits important descriptive details. Together, these dual metrics form a comprehensive view of video captioning performance. 5 authors · Jun 8, 2025
- Extrinsically-Focused Evaluation of Omissions in Medical Summarization The goal of automated summarization techniques (Paice, 1990; Kupiec et al, 1995) is to condense text by focusing on the most critical information. Generative large language models (LLMs) have shown to be robust summarizers, yet traditional metrics struggle to capture resulting performance (Goyal et al, 2022) in more powerful LLMs. In safety-critical domains such as medicine, more rigorous evaluation is required, especially given the potential for LLMs to omit important information in the resulting summary. We propose MED-OMIT, a new omission benchmark for medical summarization. Given a doctor-patient conversation and a generated summary, MED-OMIT categorizes the chat into a set of facts and identifies which are omitted from the summary. We further propose to determine fact importance by simulating the impact of each fact on a downstream clinical task: differential diagnosis (DDx) generation. MED-OMIT leverages LLM prompt-based approaches which categorize the importance of facts and cluster them as supporting or negating evidence to the diagnosis. We evaluate MED-OMIT on a publicly-released dataset of patient-doctor conversations and find that MED-OMIT captures omissions better than alternative metrics. 6 authors · Nov 14, 2023
13 Agent-Omit: Training Efficient LLM Agents for Adaptive Thought and Observation Omission via Agentic Reinforcement Learning Managing agent thought and observation during multi-turn agent-environment interactions is an emerging strategy to improve agent efficiency. However, existing studies treat the entire interaction trajectories equally, overlooking the thought necessity and observation utility varies across turns. To this end, we first conduct quantitative investigations into how thought and observation affect agent effectiveness and efficiency. Based on our findings, we propose Agent-Omit, a unified training framework that empowers LLM agents to adaptively omit redundant thoughts and observations. Specifically, we first synthesize a small amount of cold-start data, including both single-turn and multi-turn omission scenarios, to fine-tune the agent for omission behaviors. Furthermore, we introduce an omit-aware agentic reinforcement learning approach, incorporating a dual sampling mechanism and a tailored omission reward to incentivize the agent's adaptive omission capability. Theoretically, we prove that the deviation of our omission policy is upper-bounded by KL-divergence. Experimental results on five agent benchmarks show that our constructed Agent-Omit-8B could obtain performance comparable to seven frontier LLM agent, and achieve the best effectiveness-efficiency trade-off than seven efficient LLM agents methods. Our code and data are available at https://github.com/usail-hkust/Agent-Omit. Didi Chuxing · Feb 4 4
- Two Causes, Not One: Rethinking Omission and Fabrication Hallucinations in MLLMs Multimodal Large Language Models (MLLMs) have achieved impressive advances, yet object hallucination remains a persistent challenge. Existing methods, based on the flawed assumption that omission and fabrication hallucinations share a common cause, often reduce omissions only to trigger more fabrications. In this work, we overturn this view by demonstrating that omission hallucinations arise from insufficient confidence when mapping perceived visual features to linguistic expressions, whereas fabrication hallucinations result from spurious associations within the cross-modal representation space due to statistical biases in the training corpus. Building on findings from visual attention intervention experiments, we propose the Visual-Semantic Attention Potential Field, a conceptual framework that reveals how the model constructs visual evidence to infer the presence or absence of objects. Leveraging this insight, we introduce Visual Potential Field Calibration (VPFC), a plug-and-play hallucination mitigation method that effectively reduces omission hallucinations without introducing additional fabrication hallucinations. Our findings reveal a critical oversight in current object hallucination research and chart new directions for developing more robust and balanced hallucination mitigation strategies. 7 authors · Aug 30, 2025