new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

GS2Pose: Two-stage 6D Object Pose Estimation Guided by Gaussian Splatting

This paper proposes a new method for accurate and robust 6D pose estimation of novel objects, named GS2Pose. By introducing 3D Gaussian splatting, GS2Pose can utilize the reconstruction results without requiring a high-quality CAD model, which means it only requires segmented RGBD images as input. Specifically, GS2Pose employs a two-stage structure consisting of coarse estimation followed by refined estimation. In the coarse stage, a lightweight U-Net network with a polarization attention mechanism, called Pose-Net, is designed. By using the 3DGS model for supervised training, Pose-Net can generate NOCS images to compute a coarse pose. In the refinement stage, GS2Pose formulates a pose regression algorithm following the idea of reprojection or Bundle Adjustment (BA), referred to as GS-Refiner. By leveraging Lie algebra to extend 3DGS, GS-Refiner obtains a pose-differentiable rendering pipeline that refines the coarse pose by comparing the input images with the rendered images. GS-Refiner also selectively updates parameters in the 3DGS model to achieve environmental adaptation, thereby enhancing the algorithm's robustness and flexibility to illuminative variation, occlusion, and other challenging disruptive factors. GS2Pose was evaluated through experiments conducted on the LineMod dataset, where it was compared with similar algorithms, yielding highly competitive results. The code for GS2Pose will soon be released on GitHub.

  • 3 authors
·
Nov 6, 2024

Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images

Histopathological cancer diagnostics has become more complex, and the increasing number of biopsies is a challenge for most pathology laboratories. Thus, development of automatic methods for evaluation of histopathological cancer sections would be of value. In this study, we used 624 whole slide images (WSIs) of breast cancer from a Norwegian cohort. We propose a cascaded convolutional neural network design, called H2G-Net, for semantic segmentation of gigapixel histopathological images. The design involves a detection stage using a patch-wise method, and a refinement stage using a convolutional autoencoder. To validate the design, we conducted an ablation study to assess the impact of selected components in the pipeline on tumour segmentation. Guiding segmentation, using hierarchical sampling and deep heatmap refinement, proved to be beneficial when segmenting the histopathological images. We found a significant improvement when using a refinement network for postprocessing the generated tumour segmentation heatmaps. The overall best design achieved a Dice score of 0.933 on an independent test set of 90 WSIs. The design outperformed single-resolution approaches, such as cluster-guided, patch-wise high-resolution classification using MobileNetV2 (0.872) and a low-resolution U-Net (0.874). In addition, segmentation on a representative x400 WSI took ~58 seconds, using only the CPU. The findings demonstrate the potential of utilizing a refinement network to improve patch-wise predictions. The solution is efficient and does not require overlapping patch inference or ensembling. Furthermore, we showed that deep neural networks can be trained using a random sampling scheme that balances on multiple different labels simultaneously, without the need of storing patches on disk. Future work should involve more efficient patch generation and sampling, as well as improved clustering.

  • 9 authors
·
Dec 6, 2021

CritiFusion: Semantic Critique and Spectral Alignment for Faithful Text-to-Image Generation

Recent text-to-image diffusion models have achieved remarkable visual fidelity but often struggle with semantic alignment to complex prompts. We introduce CritiFusion, a novel inference-time framework that integrates a multimodal semantic critique mechanism with frequency-domain refinement to improve text-to-image consistency and detail. The proposed CritiCore module leverages a vision-language model and multiple large language models to enrich the prompt context and produce high-level semantic feedback, guiding the diffusion process to better align generated content with the prompt's intent. Additionally, SpecFusion merges intermediate generation states in the spectral domain, injecting coarse structural information while preserving high-frequency details. No additional model training is required. CritiFusion serves as a plug-in refinement stage compatible with existing diffusion backbones. Experiments on standard benchmarks show that our method notably improves human-aligned metrics of text-to-image correspondence and visual quality. CritiFusion consistently boosts performance on human preference scores and aesthetic evaluations, achieving results on par with state-of-the-art reward optimization approaches. Qualitative results further demonstrate superior detail, realism, and prompt fidelity, indicating the effectiveness of our semantic critique and spectral alignment strategy.

  • 3 authors
·
Dec 27, 2025

Is Human-Written Data Enough? The Challenge of Teaching Reasoning to LLMs Without RL or Distillation

Reasoning-capable language models achieve state-of-the-art performance in diverse complex tasks by generating long, explicit Chain-of-Thought (CoT) traces. While recent works show that base models can acquire such reasoning traces via reinforcement learning or distillation from stronger models like DeepSeek-R1, previous works demonstrate that even short CoT prompting without fine-tuning is able to improve reasoning. We ask whether long CoT can be induced in a base model using only prompting or minimal tuning. Using just 20 long CoT examples from the reasoning model QwQ-32B-Preview, we lightly fine-tune the base model Qwen2.5-32B. The resulting model outperforms the much larger Qwen2.5-Math-72B-Instruct, showing that a handful of high-quality examples can unlock strong reasoning capabilities. We further explore using CoT data from non-reasoning models and human annotators, enhanced with prompt engineering, multi-pass editing, and structural guidance. However, neither matches the performance of reasoning model traces, suggesting that certain latent qualities of expert CoT are difficult to replicate. We analyze key properties of reasoning data, such as problem difficulty, diversity, and answer length, that influence reasoning distillation. While challenges remain, we are optimistic that carefully curated human-written CoT, even in small quantities, can activate reasoning behaviors in base models. We release our human-authored dataset across refinement stages and invite further investigation into what makes small-scale reasoning supervision so effective.

  • 25 authors
·
Jul 13, 2025

I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models

Video synthesis has recently made remarkable strides benefiting from the rapid development of diffusion models. However, it still encounters challenges in terms of semantic accuracy, clarity and spatio-temporal continuity. They primarily arise from the scarcity of well-aligned text-video data and the complex inherent structure of videos, making it difficult for the model to simultaneously ensure semantic and qualitative excellence. In this report, we propose a cascaded I2VGen-XL approach that enhances model performance by decoupling these two factors and ensures the alignment of the input data by utilizing static images as a form of crucial guidance. I2VGen-XL consists of two stages: i) the base stage guarantees coherent semantics and preserves content from input images by using two hierarchical encoders, and ii) the refinement stage enhances the video's details by incorporating an additional brief text and improves the resolution to 1280times720. To improve the diversity, we collect around 35 million single-shot text-video pairs and 6 billion text-image pairs to optimize the model. By this means, I2VGen-XL can simultaneously enhance the semantic accuracy, continuity of details and clarity of generated videos. Through extensive experiments, we have investigated the underlying principles of I2VGen-XL and compared it with current top methods, which can demonstrate its effectiveness on diverse data. The source code and models will be publicly available at https://i2vgen-xl.github.io.

  • 9 authors
·
Nov 7, 2023 3

Exploring Temporally-Aware Features for Point Tracking

Point tracking in videos is a fundamental task with applications in robotics, video editing, and more. While many vision tasks benefit from pre-trained feature backbones to improve generalizability, point tracking has primarily relied on simpler backbones trained from scratch on synthetic data, which may limit robustness in real-world scenarios. Additionally, point tracking requires temporal awareness to ensure coherence across frames, but using temporally-aware features is still underexplored. Most current methods often employ a two-stage process: an initial coarse prediction followed by a refinement stage to inject temporal information and correct errors from the coarse stage. These approach, however, is computationally expensive and potentially redundant if the feature backbone itself captures sufficient temporal information. In this work, we introduce Chrono, a feature backbone specifically designed for point tracking with built-in temporal awareness. Leveraging pre-trained representations from self-supervised learner DINOv2 and enhanced with a temporal adapter, Chrono effectively captures long-term temporal context, enabling precise prediction even without the refinement stage. Experimental results demonstrate that Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets, among common feature backbones used in point tracking as well as DINOv2, with exceptional efficiency. Project page: https://cvlab-kaist.github.io/Chrono/

  • 6 authors
·
Jan 21, 2025

Self-Supervised Text Erasing with Controllable Image Synthesis

Recent efforts on scene text erasing have shown promising results. However, existing methods require rich yet costly label annotations to obtain robust models, which limits the use for practical applications. To this end, we study an unsupervised scenario by proposing a novel Self-supervised Text Erasing (STE) framework that jointly learns to synthesize training images with erasure ground-truth and accurately erase texts in the real world. We first design a style-aware image synthesis function to generate synthetic images with diverse styled texts based on two synthetic mechanisms. To bridge the text style gap between the synthetic and real-world data, a policy network is constructed to control the synthetic mechanisms by picking style parameters with the guidance of two specifically designed rewards. The synthetic training images with erasure ground-truth are then fed to train a coarse-to-fine erasing network. To produce better erasing outputs, a triplet erasure loss is designed to enforce the refinement stage to recover background textures. Moreover, we provide a new dataset (called PosterErase), which contains 60K high-resolution posters with texts and is more challenging for the text erasing task. The proposed method has been extensively evaluated with both PosterErase and the widely-used SCUT-Enstext dataset. Notably, on PosterErase, our unsupervised method achieves 5.07 in terms of FID, with a relative performance of 20.9% over existing supervised baselines.

  • 6 authors
·
Apr 27, 2022

EG4D: Explicit Generation of 4D Object without Score Distillation

In recent years, the increasing demand for dynamic 3D assets in design and gaming applications has given rise to powerful generative pipelines capable of synthesizing high-quality 4D objects. Previous methods generally rely on score distillation sampling (SDS) algorithm to infer the unseen views and motion of 4D objects, thus leading to unsatisfactory results with defects like over-saturation and Janus problem. Therefore, inspired by recent progress of video diffusion models, we propose to optimize a 4D representation by explicitly generating multi-view videos from one input image. However, it is far from trivial to handle practical challenges faced by such a pipeline, including dramatic temporal inconsistency, inter-frame geometry and texture diversity, and semantic defects brought by video generation results. To address these issues, we propose DG4D, a novel multi-stage framework that generates high-quality and consistent 4D assets without score distillation. Specifically, collaborative techniques and solutions are developed, including an attention injection strategy to synthesize temporal-consistent multi-view videos, a robust and efficient dynamic reconstruction method based on Gaussian Splatting, and a refinement stage with diffusion prior for semantic restoration. The qualitative results and user preference study demonstrate that our framework outperforms the baselines in generation quality by a considerable margin. Code will be released at https://github.com/jasongzy/EG4D.

  • 8 authors
·
May 28, 2024

Scaling Language-Centric Omnimodal Representation Learning

Recent multimodal embedding approaches leveraging multimodal large language models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising results, yet the underlying reasons behind their superiority remain underexplored. This work argues that a crucial advantage of MLLM-based approaches stems from implicit cross-modal alignment achieved during generative pretraining, where the language decoder learns to exploit multimodal signals within a shared representation space for generating unimodal outputs. Through analysis of anisotropy and kernel similarity structure, we empirically confirm that latent alignment emerges within MLLM representations, allowing CL to serve as a lightweight refinement stage. Leveraging this insight, we propose a Language-Centric Omnimodal Embedding framework, termed LCO-Emb. Extensive experiments across diverse backbones and benchmarks demonstrate its effectiveness, achieving state-of-the-art performance across modalities. Furthermore, we identify a Generation-Representation Scaling Law (GRSL), showing that the representational capabilities gained through contrastive refinement scales positively with the MLLM's generative capabilities. This suggests that improving generative abilities evolves as an effective paradigm for enhancing representation quality. We provide a theoretical explanation of GRSL, which formally links the MLLM's generative quality to the upper bound on its representation performance, and validate it on a challenging, low-resource visual-document retrieval task, showing that continual generative pretraining before CL can further enhance the potential of a model's embedding capabilities. Codes, models, and resources are available at https://github.com/LCO-Embedding/LCO-Embedding.

Alibaba-DAMO-Academy DAMO Academy
·
Oct 13, 2025 4

SeqNet: Learning Descriptors for Sequence-based Hierarchical Place Recognition

Visual Place Recognition (VPR) is the task of matching current visual imagery from a camera to images stored in a reference map of the environment. While initial VPR systems used simple direct image methods or hand-crafted visual features, recent work has focused on learning more powerful visual features and further improving performance through either some form of sequential matcher / filter or a hierarchical matching process. In both cases the performance of the initial single-image based system is still far from perfect, putting significant pressure on the sequence matching or (in the case of hierarchical systems) pose refinement stages. In this paper we present a novel hybrid system that creates a high performance initial match hypothesis generator using short learnt sequential descriptors, which enable selective control sequential score aggregation using single image learnt descriptors. Sequential descriptors are generated using a temporal convolutional network dubbed SeqNet, encoding short image sequences using 1-D convolutions, which are then matched against the corresponding temporal descriptors from the reference dataset to provide an ordered list of place match hypotheses. We then perform selective sequential score aggregation using shortlisted single image learnt descriptors from a separate pipeline to produce an overall place match hypothesis. Comprehensive experiments on challenging benchmark datasets demonstrate the proposed method outperforming recent state-of-the-art methods using the same amount of sequential information. Source code and supplementary material can be found at https://github.com/oravus/seqNet.

  • 2 authors
·
Feb 23, 2021

FAPO: Flawed-Aware Policy Optimization for Efficient and Reliable Reasoning

Reinforcement learning with verifiable rewards (RLVR) has emerged as a promising paradigm for enhancing the reasoning capabilities of large language models (LLMs). In this context, models explore reasoning trajectories and exploit rollouts with correct answers as positive signals for policy optimization. However, these rollouts might involve flawed patterns such as answer-guessing and jump-in-reasoning. Such flawed-positive rollouts are rewarded identically to fully correct ones, causing policy models to internalize these unreliable reasoning patterns. In this work, we first conduct a systematic study of flawed-positive rollouts in RL and find that they enable rapid capability gains during the early optimization stage, while constraining reasoning capability later by reinforcing unreliable patterns. Building on these insights, we propose Flawed-Aware Policy Optimization (FAPO), which presents a parameter-free reward penalty for flawed-positive rollouts, enabling the policy to leverage them as useful shortcuts in the warm-up stage, securing stable early gains, while gradually shifting optimization toward reliable reasoning in the later refinement stage. To accurately and comprehensively detect flawed-positive rollouts, we introduce a generative reward model (GenRM) with a process-level reward that precisely localizes reasoning errors. Experiments show that FAPO is effective in broad domains, improving outcome correctness, process reliability, and training stability without increasing the token budget.

  • 6 authors
·
Oct 26, 2025 1

Beyond Direct Generation: A Decomposed Approach to Well-Crafted Screenwriting with LLMs

The screenplay serves as the foundation for television production, defining narrative structure, character development, and dialogue. While Large Language Models (LLMs) show great potential in creative writing, direct end-to-end generation approaches often fail to produce well-crafted screenplays. We argue this failure stems from forcing a single model to simultaneously master two disparate capabilities: creative narrative construction and rigid format adherence. The resulting outputs may mimic superficial style but lack the deep structural integrity and storytelling substance required for professional use. To enable LLMs to generate high-quality screenplays, we introduce Dual-Stage Refinement (DSR), a decomposed framework that decouples creative narrative generation from format conversion. The first stage transforms a brief outline into rich, novel-style prose. The second stage refines this narrative into a professionally formatted screenplay. This separation enables the model to specialize in one distinct capability at each stage. A key challenge in implementing DSR is the scarcity of paired outline-to-novel training data. We address this through hybrid data synthesis: reverse synthesis deconstructs existing screenplays into structured inputs, while forward synthesis leverages these inputs to generate high-quality narrative texts as training targets. Blind evaluations by professional screenwriters show that DSR achieves a 75% win rate against strong baselines like Gemini-2.5-Pro and reaches 82.7% of human-level performance. Our work demonstrates that decomposed generation architecture with tailored data synthesis effectively specializes LLMs in complex creative domains.

  • 5 authors
·
Oct 27, 2025

MedBench v4: A Robust and Scalable Benchmark for Evaluating Chinese Medical Language Models, Multimodal Models, and Intelligent Agents

Recent advances in medical large language models (LLMs), multimodal models, and agents demand evaluation frameworks that reflect real clinical workflows and safety constraints. We present MedBench v4, a nationwide, cloud-based benchmarking infrastructure comprising over 700,000 expert-curated tasks spanning 24 primary and 91 secondary specialties, with dedicated tracks for LLMs, multimodal models, and agents. Items undergo multi-stage refinement and multi-round review by clinicians from more than 500 institutions, and open-ended responses are scored by an LLM-as-a-judge calibrated to human ratings. We evaluate 15 frontier models. Base LLMs reach a mean overall score of 54.1/100 (best: Claude Sonnet 4.5, 62.5/100), but safety and ethics remain low (18.4/100). Multimodal models perform worse overall (mean 47.5/100; best: GPT-5, 54.9/100), with solid perception yet weaker cross-modal reasoning. Agents built on the same backbones substantially improve end-to-end performance (mean 79.8/100), with Claude Sonnet 4.5-based agents achieving up to 85.3/100 overall and 88.9/100 on safety tasks. MedBench v4 thus reveals persisting gaps in multimodal reasoning and safety for base models, while showing that governance-aware agentic orchestration can markedly enhance benchmarked clinical readiness without sacrificing capability. By aligning tasks with Chinese clinical guidelines and regulatory priorities, the platform offers a practical reference for hospitals, developers, and policymakers auditing medical AI.

  • 18 authors
·
Nov 18, 2025

CPKD: Clinical Prior Knowledge-Constrained Diffusion Models for Surgical Phase Recognition in Endoscopic Submucosal Dissection

Gastrointestinal malignancies constitute a leading cause of cancer-related mortality worldwide, with advanced-stage prognosis remaining particularly dismal. Originating as a groundbreaking technique for early gastric cancer treatment, Endoscopic Submucosal Dissection has evolved into a versatile intervention for diverse gastrointestinal lesions. While computer-assisted systems significantly enhance procedural precision and safety in ESD, their clinical adoption faces a critical bottleneck: reliable surgical phase recognition within complex endoscopic workflows. Current state-of-the-art approaches predominantly rely on multi-stage refinement architectures that iteratively optimize temporal predictions. In this paper, we present Clinical Prior Knowledge-Constrained Diffusion (CPKD), a novel generative framework that reimagines phase recognition through denoising diffusion principles while preserving the core iterative refinement philosophy. This architecture progressively reconstructs phase sequences starting from random noise and conditioned on visual-temporal features. To better capture three domain-specific characteristics, including positional priors, boundary ambiguity, and relation dependency, we design a conditional masking strategy. Furthermore, we incorporate clinical prior knowledge into the model training to improve its ability to correct phase logical errors. Comprehensive evaluations on ESD820, Cholec80, and external multi-center demonstrate that our proposed CPKD achieves superior or comparable performance to state-of-the-art approaches, validating the effectiveness of diffusion-based generative paradigms for surgical phase recognition.

  • 7 authors
·
Jul 4, 2025

UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models

Text-to-Image (T2I) generation methods based on diffusion model have garnered significant attention in the last few years. Although these image synthesis methods produce visually appealing results, they frequently exhibit spelling errors when rendering text within the generated images. Such errors manifest as missing, incorrect or extraneous characters, thereby severely constraining the performance of text image generation based on diffusion models. To address the aforementioned issue, this paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model (i.e., Stable Diffusion [27]). Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder and provides more robust text embeddings as conditional guidance. Then, we fine-tune the diffusion model using a large-scale dataset, incorporating local attention control under the supervision of character-level segmentation maps. Finally, by employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. Furthermore, we showcase several potential applications of the proposed UDiffText, including text-centric image synthesis, scene text editing, etc. Code and model will be available at https://github.com/ZYM-PKU/UDiffText .

  • 2 authors
·
Dec 8, 2023

DyBluRF: Dynamic Deblurring Neural Radiance Fields for Blurry Monocular Video

Video view synthesis, allowing for the creation of visually appealing frames from arbitrary viewpoints and times, offers immersive viewing experiences. Neural radiance fields, particularly NeRF, initially developed for static scenes, have spurred the creation of various methods for video view synthesis. However, the challenge for video view synthesis arises from motion blur, a consequence of object or camera movement during exposure, which hinders the precise synthesis of sharp spatio-temporal views. In response, we propose a novel dynamic deblurring NeRF framework for blurry monocular video, called DyBluRF, consisting of an Interleave Ray Refinement (IRR) stage and a Motion Decomposition-based Deblurring (MDD) stage. Our DyBluRF is the first that addresses and handles the novel view synthesis for blurry monocular video. The IRR stage jointly reconstructs dynamic 3D scenes and refines the inaccurate camera pose information to combat imprecise pose information extracted from the given blurry frames. The MDD stage is a novel incremental latent sharp-rays prediction (ILSP) approach for the blurry monocular video frames by decomposing the latent sharp rays into global camera motion and local object motion components. Extensive experimental results demonstrate that our DyBluRF outperforms qualitatively and quantitatively the very recent state-of-the-art methods. Our project page including source codes and pretrained model are publicly available at https://kaist-viclab.github.io/dyblurf-site/.

  • 4 authors
·
Dec 20, 2023 1

Team Xiaomi EV-AD VLA: Caption-Guided Retrieval System for Cross-Modal Drone Navigation -- Technical Report for IROS 2025 RoboSense Challenge Track 4

Cross-modal drone navigation remains a challenging task in robotics, requiring efficient retrieval of relevant images from large-scale databases based on natural language descriptions. The RoboSense 2025 Track 4 challenge addresses this challenge, focusing on robust, natural language-guided cross-view image retrieval across multiple platforms (drones, satellites, and ground cameras). Current baseline methods, while effective for initial retrieval, often struggle to achieve fine-grained semantic matching between text queries and visual content, especially in complex aerial scenes. To address this challenge, we propose a two-stage retrieval refinement method: Caption-Guided Retrieval System (CGRS) that enhances the baseline coarse ranking through intelligent reranking. Our method first leverages a baseline model to obtain an initial coarse ranking of the top 20 most relevant images for each query. We then use Vision-Language-Model (VLM) to generate detailed captions for these candidate images, capturing rich semantic descriptions of their visual content. These generated captions are then used in a multimodal similarity computation framework to perform fine-grained reranking of the original text query, effectively building a semantic bridge between the visual content and natural language descriptions. Our approach significantly improves upon the baseline, achieving a consistent 5\% improvement across all key metrics (Recall@1, Recall@5, and Recall@10). Our approach win TOP-2 in the challenge, demonstrating the practical value of our semantic refinement strategy in real-world robotic navigation scenarios.

  • 10 authors
·
Oct 3, 2025

Refinement Module based on Parse Graph of Feature Map for Human Pose Estimation

Parse graphs of the human body can be obtained in the human brain to help humans complete the human pose estimation (HPE). It contains a hierarchical structure, like a tree structure, and context relations among nodes. Many researchers pre-design the parse graph of body structure, and then design framework for HPE. However, these frameworks are difficulty adapting when encountering situations that differ from the preset human structure. Different from them, we regard the feature map as a whole, similarly to human body, so the feature map can be optimized based on parse graphs and each node feature is learned implicitly instead of explicitly, which means it can flexibly respond to different human body structure. In this paper, we design the Refinement Module based on the Parse Graph of feature map (RMPG), which includes two stages: top-down decomposition and bottom-up combination. In the top-down decomposition stage, the feature map is decomposed into multiple sub-feature maps along the channel and their context relations are calculated to obtain their respective context information. In the bottom-up combination stage, the sub-feature maps and their context information are combined to obtain refined sub-feature maps, and then these refined sub-feature maps are concatenated to obtain the refined feature map. Additionally ,we design a top-down framework by using multiple RMPG modules for HPE, some of which are supervised to obtain context relations among body parts. Our framework achieves excellent results on the COCO keypoint detection, CrowdPose and MPII human pose datasets. More importantly, our experiments also demonstrate the effectiveness of RMPG on different methods, including SimpleBaselines, Hourglass, and ViTPose.

  • 3 authors
·
Jan 19, 2025

Multi-scale Iterative Refinement towards Robust and Versatile Molecular Docking

Molecular docking is a key computational tool utilized to predict the binding conformations of small molecules to protein targets, which is fundamental in the design of novel drugs. Despite recent advancements in geometric deep learning-based approaches leading to improvements in blind docking efficiency, these methods have encountered notable challenges, such as limited generalization performance on unseen proteins, the inability to concurrently address the settings of blind docking and site-specific docking, and the frequent occurrence of physical implausibilities such as inter-molecular steric clash. In this study, we introduce DeltaDock, a robust and versatile framework designed for efficient molecular docking to overcome these challenges. DeltaDock operates in a two-step process: rapid initial complex structures sampling followed by multi-scale iterative refinement of the initial structures. In the initial stage, to sample accurate structures with high efficiency, we develop a ligand-dependent binding site prediction model founded on large protein models and graph neural networks. This model is then paired with GPU-accelerated sampling algorithms. The sampled structures are updated using a multi-scale iterative refinement module that captures both protein-ligand atom-atom interactions and residue-atom interactions in the following stage. Distinct from previous geometric deep learning methods that are conditioned on the blind docking setting, DeltaDock demonstrates superior performance in both blind docking and site-specific docking settings. Comprehensive experimental results reveal that DeltaDock consistently surpasses baseline methods in terms of docking accuracy. Furthermore, it displays remarkable generalization capabilities and proficiency for predicting physically valid structures, thereby attesting to its robustness and reliability in various scenarios.

  • 4 authors
·
Nov 30, 2023

DiffFit: Disentangled Garment Warping and Texture Refinement for Virtual Try-On

Virtual try-on (VTON) aims to synthesize realistic images of a person wearing a target garment, with broad applications in e-commerce and digital fashion. While recent advances in latent diffusion models have substantially improved visual quality, existing approaches still struggle with preserving fine-grained garment details, achieving precise garment-body alignment, maintaining inference efficiency, and generalizing to diverse poses and clothing styles. To address these challenges, we propose DiffFit, a novel two-stage latent diffusion framework for high-fidelity virtual try-on. DiffFit adopts a progressive generation strategy: the first stage performs geometry-aware garment warping, aligning the garment with the target body through fine-grained deformation and pose adaptation. The second stage refines texture fidelity via a cross-modal conditional diffusion model that integrates the warped garment, the original garment appearance, and the target person image for high-quality rendering. By decoupling geometric alignment and appearance refinement, DiffFit effectively reduces task complexity and enhances both generation stability and visual realism. It excels in preserving garment-specific attributes such as textures, wrinkles, and lighting, while ensuring accurate alignment with the human body. Extensive experiments on large-scale VTON benchmarks demonstrate that DiffFit achieves superior performance over existing state-of-the-art methods in both quantitative metrics and perceptual evaluations.

  • 1 authors
·
Jun 29, 2025

CORE-ReID: Comprehensive Optimization and Refinement through Ensemble fusion in Domain Adaptation for person re-identification

This study introduces a novel framework, "Comprehensive Optimization and Refinement through Ensemble Fusion in Domain Adaptation for Person Re-identification (CORE-ReID)", to address an Unsupervised Domain Adaptation (UDA) for Person Re-identification (ReID). The framework utilizes CycleGAN to generate diverse data that harmonizes differences in image characteristics from different camera sources in the pre-training stage. In the fine-tuning stage, based on a pair of teacher-student networks, the framework integrates multi-view features for multi-level clustering to derive diverse pseudo labels. A learnable Ensemble Fusion component that focuses on fine-grained local information within global features is introduced to enhance learning comprehensiveness and avoid ambiguity associated with multiple pseudo-labels. Experimental results on three common UDAs in Person ReID demonstrate significant performance gains over state-of-the-art approaches. Additional enhancements, such as Efficient Channel Attention Block and Bidirectional Mean Feature Normalization mitigate deviation effects and adaptive fusion of global and local features using the ResNet-based model, further strengthening the framework. The proposed framework ensures clarity in fusion features, avoids ambiguity, and achieves high ac-curacy in terms of Mean Average Precision, Top-1, Top-5, and Top-10, positioning it as an advanced and effective solution for the UDA in Person ReID. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID.

  • 3 authors
·
Aug 5, 2025

VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement

Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of four stages: In (1) video evaluation, we detect misalignments by generating fine-grained evaluation questions and answering those questions with MLLM. In (2) refinement planning, we identify accurately generated objects and then create localized prompts to refine other areas in the video. Next, in (3) region decomposition, we segment the correctly generated area using a combined grounding module. We regenerate the video by adjusting the misaligned regions while preserving the correct regions in (4) localized refinement. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.

  • 4 authors
·
Nov 22, 2024 3

UltraShape 1.0: High-Fidelity 3D Shape Generation via Scalable Geometric Refinement

In this report, we introduce UltraShape 1.0, a scalable 3D diffusion framework for high-fidelity 3D geometry generation. The proposed approach adopts a two-stage generation pipeline: a coarse global structure is first synthesized and then refined to produce detailed, high-quality geometry. To support reliable 3D generation, we develop a comprehensive data processing pipeline that includes a novel watertight processing method and high-quality data filtering. This pipeline improves the geometric quality of publicly available 3D datasets by removing low-quality samples, filling holes, and thickening thin structures, while preserving fine-grained geometric details. To enable fine-grained geometry refinement, we decouple spatial localization from geometric detail synthesis in the diffusion process. We achieve this by performing voxel-based refinement at fixed spatial locations, where voxel queries derived from coarse geometry provide explicit positional anchors encoded via RoPE, allowing the diffusion model to focus on synthesizing local geometric details within a reduced, structured solution space. Our model is trained exclusively on publicly available 3D datasets, achieving strong geometric quality despite limited training resources. Extensive evaluations demonstrate that UltraShape 1.0 performs competitively with existing open-source methods in both data processing quality and geometry generation. All code and trained models will be released to support future research.

  • 13 authors
·
Dec 24, 2025 4

Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning

Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.

FudanNLP Fudan NLP Lab
·
Oct 28, 2025 3

RAPO++: Cross-Stage Prompt Optimization for Text-to-Video Generation via Data Alignment and Test-Time Scaling

Prompt design plays a crucial role in text-to-video (T2V) generation, yet user-provided prompts are often short, unstructured, and misaligned with training data, limiting the generative potential of diffusion-based T2V models. We present RAPO++, a cross-stage prompt optimization framework that unifies training-data--aligned refinement, test-time iterative scaling, and large language model (LLM) fine-tuning to substantially improve T2V generation without modifying the underlying generative backbone. In Stage 1, Retrieval-Augmented Prompt Optimization (RAPO) enriches user prompts with semantically relevant modifiers retrieved from a relation graph and refactors them to match training distributions, enhancing compositionality and multi-object fidelity. Stage 2 introduces Sample-Specific Prompt Optimization (SSPO), a closed-loop mechanism that iteratively refines prompts using multi-source feedback -- including semantic alignment, spatial fidelity, temporal coherence, and task-specific signals such as optical flow -- yielding progressively improved video generation quality. Stage 3 leverages optimized prompt pairs from SSPO to fine-tune the rewriter LLM, internalizing task-specific optimization patterns and enabling efficient, high-quality prompt generation even before inference. Extensive experiments across five state-of-the-art T2V models and five benchmarks demonstrate that RAPO++ achieves significant gains in semantic alignment, compositional reasoning, temporal stability, and physical plausibility, outperforming existing methods by large margins. Our results highlight RAPO++ as a model-agnostic, cost-efficient, and scalable solution that sets a new standard for prompt optimization in T2V generation. The code is available at https://github.com/Vchitect/RAPO.

Think Thrice Before You Act: Progressive Thought Refinement in Large Language Models

Recent advancements in large language models (LLMs) have demonstrated that progressive refinement, rather than providing a single answer, results in more accurate and thoughtful outputs. However, existing methods often rely heavily on supervision signals to evaluate previous responses, making it difficult to assess output quality in more open-ended scenarios effectively. Additionally, these methods are typically designed for specific tasks, which limits their generalization to new domains. To address these limitations, we propose Progressive Thought Refinement (PTR), a framework that enables LLMs to refine their responses progressively. PTR operates in two phases: (1) Thought data construction stage: We propose a weak and strong model collaborative selection strategy to build a high-quality progressive refinement dataset to ensure logical consistency from thought to answers, and the answers are gradually refined in each round. (2) Thought-Mask Fine-Tuning Phase: We design a training structure to mask the "thought" and adjust loss weights to encourage LLMs to refine prior thought, teaching them to implicitly understand "how to improve" rather than "what is correct." Experimental results show that PTR significantly enhances LLM performance across ten diverse tasks (avg. from 49.6% to 53.5%) without task-specific fine-tuning. Notably, in more open-ended tasks, LLMs also demonstrate substantial improvements in the quality of responses beyond mere accuracy, suggesting that PTR truly teaches LLMs to self-improve over time.

  • 12 authors
·
Oct 17, 2024

Improved Iterative Refinement for Chart-to-Code Generation via Structured Instruction

Recently, multimodal large language models (MLLMs) have attracted increasing research attention due to their powerful visual understanding capabilities. While they have achieved impressive results on various vision tasks, their performance on chart-to-code generation remains suboptimal. This task requires MLLMs to generate executable code that can reproduce a given chart, demanding not only precise visual understanding but also accurate translation of visual elements into structured code. Directly prompting MLLMs to perform this complex task often yields unsatisfactory results. To address this challenge, we propose {ChartIR}, an iterative refinement method based on structured instruction. First, we distinguish two tasks: visual understanding and code translation. To accomplish the visual understanding component, we design two types of structured instructions: description and difference. The description instruction captures the visual elements of the reference chart, while the difference instruction characterizes the discrepancies between the reference chart and the generated chart. These instructions effectively transform visual features into language representations, thereby facilitating the subsequent code translation process. Second, we decompose the overall chart generation pipeline into two stages: initial code generation and iterative refinement, enabling progressive enhancement of the final output. Experimental results show that, compared to other method, our method achieves superior performance on both the open-source model Qwen2-VL and the closed-source model GPT-4o.

  • 5 authors
·
Jun 15, 2025 2

Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks

While Vision-Language Models (VLMs) have shown remarkable abilities in visual and language reasoning tasks, they invariably generate flawed responses. Self-correction that instructs models to refine their outputs presents a promising solution to this issue. Previous studies have mainly concentrated on Large Language Models (LLMs), while the self-correction abilities of VLMs, particularly concerning both visual and linguistic information, remain largely unexamined. This study investigates the self-correction capabilities of VLMs during both inference and fine-tuning stages. We introduce a Self-Correction Learning (SCL) approach that enables VLMs to learn from their self-generated self-correction data through Direct Preference Optimization (DPO) without relying on external feedback, facilitating self-improvement. Specifically, we collect preferred and disfavored samples based on the correctness of initial and refined responses, which are obtained by two-turn self-correction with VLMs during the inference stage. Experimental results demonstrate that although VLMs struggle to self-correct effectively during iterative inference without additional fine-tuning and external feedback, they can enhance their performance and avoid previous mistakes through preference fine-tuning when their self-generated self-correction data are categorized into preferred and disfavored samples. This study emphasizes that self-correction is not merely a refinement process; rather, it should enhance the reasoning abilities of models through additional training, enabling them to generate high-quality responses directly without further refinement.

  • 5 authors
·
Oct 5, 2024

IRG-MotionLLM: Interleaving Motion Generation, Assessment and Refinement for Text-to-Motion Generation

Recent advances in motion-aware large language models have shown remarkable promise for unifying motion understanding and generation tasks. However, these models typically treat understanding and generation separately, limiting the mutual benefits that could arise from interactive feedback between tasks. In this work, we reveal that motion assessment and refinement tasks act as crucial bridges to enable bidirectional knowledge flow between understanding and generation. Leveraging this insight, we propose Interleaved Reasoning for Motion Generation (IRMoGen), a novel paradigm that tightly couples motion generation with assessment and refinement through iterative text-motion dialogue. To realize this, we introduce IRG-MotionLLM, the first model that seamlessly interleaves motion generation, assessment, and refinement to improve generation performance. IRG-MotionLLM is developed progressively with a novel three-stage training scheme, initializing and subsequently enhancing native IRMoGen capabilities. To facilitate this development, we construct an automated data engine to synthesize interleaved reasoning annotations from existing text-motion datasets. Extensive experiments demonstrate that: (i) Assessment and refinement tasks significantly improve text-motion alignment; (ii) Interleaving motion generation, assessment, and refinement steps yields consistent performance gains across training stages; and (iii) IRG-MotionLLM clearly outperforms the baseline model and achieves advanced performance on standard text-to-motion generation benchmarks. Cross-evaluator testing further validates its effectiveness. Code & Data: https://github.com/HumanMLLM/IRG-MotionLLM/tree/main.

  • 8 authors
·
Dec 11, 2025

EduFlow: Advancing MLLMs' Problem-Solving Proficiency through Multi-Stage, Multi-Perspective Critique

Multimodal large language models (MLLMs) still perform poorly on scientific tasks, particularly those requiring multi-step and interpretable reasoning. Their limitations include insufficient scientific reasoning patterns, lack of global coherence in multi-step inference, and the absence of reflective self-correction, making them unreliable in structured scientific contexts. We introduce EduFlow, the first end-to-end framework that covers the full pipeline of educational scientific reasoning, including data selection, MCTS-based trajectory construction, model training, and output optimization. At its core is EduPRM, a process-aware reward model that critiques reasoning steps with tags and justifications. EduPRM is trained via curriculum learning on three complementary supervision sources: MCTS-guided trajectories, error-injected critiques, and teacher-student dialogues, enabling dynamic adaptation to multi-stage problem solving and iterative refinement during inference. We further propose EduMCTS, a domain-adapted search framework that introduces bootstrapping actions specifically designed for educational reasoning, such as a self-reflection mechanism that promotes reflective error correction. It further leverages EduPRM's fine-grained feedback to guide the search toward higher-quality reasoning trajectories. By applying self-consistency and rejection sampling, we constructed EduMCTS-160K, a large-scale dataset of educational reasoning trajectories. Extensive experiments demonstrate that EduFlow enhances reasoning consistency and coherence. Code, data, and models will be released.

  • 6 authors
·
Jul 12, 2025

Fine-Grained Alignment and Noise Refinement for Compositional Text-to-Image Generation

Text-to-image generative models have made significant advancements in recent years; however, accurately capturing intricate details in textual prompts, such as entity missing, attribute binding errors, and incorrect relationships remains a formidable challenge. In response, we present an innovative, training-free method that directly addresses these challenges by incorporating tailored objectives to account for textual constraints. Unlike layout-based approaches that enforce rigid structures and limit diversity, our proposed approach offers a more flexible arrangement of the scene by imposing just the extracted constraints from the text, without any unnecessary additions. These constraints are formulated as losses-entity missing, entity mixing, attribute binding, and spatial relationships, integrated into a unified loss that is applied in the first generation stage. Furthermore, we introduce a feedback-driven system for fine-grained initial noise refinement. This system integrates a verifier that evaluates the generated image, identifies inconsistencies, and provides corrective feedback. Leveraging this feedback, our refinement method first targets the unmet constraints by refining the faulty attention maps caused by initial noise, through the optimization of selective losses associated with these constraints. Subsequently, our unified loss function is reapplied to proceed the second generation phase. Experimental results demonstrate that our method, relying solely on our proposed objective functions, significantly enhances compositionality, achieving a 24% improvement in human evaluation and a 25% gain in spatial relationships. Furthermore, our fine-grained noise refinement proves effective, boosting performance by up to 5%. Code is available at https://github.com/hadi-hosseini/noise-refinement.

  • 6 authors
·
Mar 9, 2025

RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation

Large language models excel at function- and file-level code generation, yet generating complete repositories from scratch remains a fundamental challenge. This process demands coherent and reliable planning across proposal- and implementation-level stages, while natural language, due to its ambiguity and verbosity, is ill-suited for faithfully representing complex software structures. To address this, we introduce the Repository Planning Graph (RPG), a persistent representation that unifies proposal- and implementation-level planning by encoding capabilities, file structures, data flows, and functions in one graph. RPG replaces ambiguous natural language with an explicit blueprint, enabling long-horizon planning and scalable repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework for repository generation from scratch. It operates in three stages: proposal-level planning and implementation-level refinement to construct the graph, followed by graph-guided code generation with test validation. To evaluate this setting, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces repositories averaging nearly 36K LOC, roughly 3.9times the strongest baseline (Claude Code) and about 64times other baselines. It attains 81.5% functional coverage and a 69.7% pass rate, exceeding Claude Code by 27.3 and 35.8 percentage points, respectively. Further analysis shows that RPG models complex dependencies, enables progressively more sophisticated planning through near-linear scaling, and enhances LLM understanding of repositories, thereby accelerating agent localization.

  • 14 authors
·
Sep 19, 2025 21

Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models

Diffusion models have achieved great progress in image animation due to powerful generative capabilities. However, maintaining spatio-temporal consistency with detailed information from the input static image over time (e.g., style, background, and object of the input static image) and ensuring smoothness in animated video narratives guided by textual prompts still remains challenging. In this paper, we introduce Cinemo, a novel image animation approach towards achieving better motion controllability, as well as stronger temporal consistency and smoothness. In general, we propose three effective strategies at the training and inference stages of Cinemo to accomplish our goal. At the training stage, Cinemo focuses on learning the distribution of motion residuals, rather than directly predicting subsequent via a motion diffusion model. Additionally, a structural similarity index-based strategy is proposed to enable Cinemo to have better controllability of motion intensity. At the inference stage, a noise refinement technique based on discrete cosine transformation is introduced to mitigate sudden motion changes. Such three strategies enable Cinemo to produce highly consistent, smooth, and motion-controllable results. Compared to previous methods, Cinemo offers simpler and more precise user controllability. Extensive experiments against several state-of-the-art methods, including both commercial tools and research approaches, across multiple metrics, demonstrate the effectiveness and superiority of our proposed approach.

  • 7 authors
·
Jul 22, 2024 2

Lotus-2: Advancing Geometric Dense Prediction with Powerful Image Generative Model

Recovering pixel-wise geometric properties from a single image is fundamentally ill-posed due to appearance ambiguity and non-injective mappings between 2D observations and 3D structures. While discriminative regression models achieve strong performance through large-scale supervision, their success is bounded by the scale, quality and diversity of available data and limited physical reasoning. Recent diffusion models exhibit powerful world priors that encode geometry and semantics learned from massive image-text data, yet directly reusing their stochastic generative formulation is suboptimal for deterministic geometric inference: the former is optimized for diverse and high-fidelity image generation, whereas the latter requires stable and accurate predictions. In this work, we propose Lotus-2, a two-stage deterministic framework for stable, accurate and fine-grained geometric dense prediction, aiming to provide an optimal adaption protocol to fully exploit the pre-trained generative priors. Specifically, in the first stage, the core predictor employs a single-step deterministic formulation with a clean-data objective and a lightweight local continuity module (LCM) to generate globally coherent structures without grid artifacts. In the second stage, the detail sharpener performs a constrained multi-step rectified-flow refinement within the manifold defined by the core predictor, enhancing fine-grained geometry through noise-free deterministic flow matching. Using only 59K training samples, less than 1% of existing large-scale datasets, Lotus-2 establishes new state-of-the-art results in monocular depth estimation and highly competitive surface normal prediction. These results demonstrate that diffusion models can serve as deterministic world priors, enabling high-quality geometric reasoning beyond traditional discriminative and generative paradigms.

  • 4 authors
·
Nov 30, 2025 2

PerceptionGAN: Real-world Image Construction from Provided Text through Perceptual Understanding

Generating an image from a provided descriptive text is quite a challenging task because of the difficulty in incorporating perceptual information (object shapes, colors, and their interactions) along with providing high relevancy related to the provided text. Current methods first generate an initial low-resolution image, which typically has irregular object shapes, colors, and interaction between objects. This initial image is then improved by conditioning on the text. However, these methods mainly address the problem of using text representation efficiently in the refinement of the initially generated image, while the success of this refinement process depends heavily on the quality of the initially generated image, as pointed out in the DM-GAN paper. Hence, we propose a method to provide good initialized images by incorporating perceptual understanding in the discriminator module. We improve the perceptual information at the first stage itself, which results in significant improvement in the final generated image. In this paper, we have applied our approach to the novel StackGAN architecture. We then show that the perceptual information included in the initial image is improved while modeling image distribution at multiple stages. Finally, we generated realistic multi-colored images conditioned by text. These images have good quality along with containing improved basic perceptual information. More importantly, the proposed method can be integrated into the pipeline of other state-of-the-art text-based-image-generation models to generate initial low-resolution images. We also worked on improving the refinement process in StackGAN by augmenting the third stage of the generator-discriminator pair in the StackGAN architecture. Our experimental analysis and comparison with the state-of-the-art on a large but sparse dataset MS COCO further validate the usefulness of our proposed approach.

  • 4 authors
·
Jul 2, 2020

Better Tokens for Better 3D: Advancing Vision-Language Modeling in 3D Medical Imaging

Recent progress in vision-language modeling for 3D medical imaging has been fueled by large-scale computed tomography (CT) corpora with paired free-text reports, stronger architectures, and powerful pretrained models. This has enabled applications such as automated report generation and text-conditioned 3D image synthesis. Yet, current approaches struggle with high-resolution, long-sequence volumes: contrastive pretraining often yields vision encoders that are misaligned with clinical language, and slice-wise tokenization blurs fine anatomy, reducing diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D training and inference while producing compact, frequency-aware volumetric tokens. A three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-window tiling, and (iii) long-context decoder refinement, during which the model learns from short slice excerpts yet generalizes to scans exceeding 300 slices without additional memory overhead. BTB3D sets a new state-of-the-art on two key tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep, CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing anatomically consistent 512*512*241 volumes. These results confirm that precise three-dimensional tokenization, rather than larger language backbones alone, is essential for scalable vision-language modeling in 3D medical imaging. The codebase is available at: https://github.com/ibrahimethemhamamci/BTB3D

  • 10 authors
·
Oct 23, 2025

Human3R: Everyone Everywhere All at Once

We present Human3R, a unified, feed-forward framework for online 4D human-scene reconstruction, in the world frame, from casually captured monocular videos. Unlike previous approaches that rely on multi-stage pipelines, iterative contact-aware refinement between humans and scenes, and heavy dependencies, e.g., human detection, depth estimation, and SLAM pre-processing, Human3R jointly recovers global multi-person SMPL-X bodies ("everyone"), dense 3D scene ("everywhere"), and camera trajectories in a single forward pass ("all-at-once"). Our method builds upon the 4D online reconstruction model CUT3R, and uses parameter-efficient visual prompt tuning, to strive to preserve CUT3R's rich spatiotemporal priors, while enabling direct readout of multiple SMPL-X bodies. Human3R is a unified model that eliminates heavy dependencies and iterative refinement. After being trained on the relatively small-scale synthetic dataset BEDLAM for just one day on one GPU, it achieves superior performance with remarkable efficiency: it reconstructs multiple humans in a one-shot manner, along with 3D scenes, in one stage, at real-time speed (15 FPS) with a low memory footprint (8 GB). Extensive experiments demonstrate that Human3R delivers state-of-the-art or competitive performance across tasks, including global human motion estimation, local human mesh recovery, video depth estimation, and camera pose estimation, with a single unified model. We hope that Human3R will serve as a simple yet strong baseline, be easily extended for downstream applications.Code available in https://fanegg.github.io/Human3R

  • 6 authors
·
Oct 7, 2025 2

ProPhy: Progressive Physical Alignment for Dynamic World Simulation

Recent advances in video generation have shown remarkable potential for constructing world simulators. However, current models still struggle to produce physically consistent results, particularly when handling large-scale or complex dynamics. This limitation arises primarily because existing approaches respond isotropically to physical prompts and neglect the fine-grained alignment between generated content and localized physical cues. To address these challenges, we propose ProPhy, a Progressive Physical Alignment Framework that enables explicit physics-aware conditioning and anisotropic generation. ProPhy employs a two-stage Mixture-of-Physics-Experts (MoPE) mechanism for discriminative physical prior extraction, where Semantic Experts infer semantic-level physical principles from textual descriptions, and Refinement Experts capture token-level physical dynamics. This mechanism allows the model to learn fine-grained, physics-aware video representations that better reflect underlying physical laws. Furthermore, we introduce a physical alignment strategy that transfers the physical reasoning capabilities of vision-language models (VLMs) into the Refinement Experts, facilitating a more accurate representation of dynamic physical phenomena. Extensive experiments on physics-aware video generation benchmarks demonstrate that ProPhy produces more realistic, dynamic, and physically coherent results than existing state-of-the-art methods.

  • 10 authors
·
Dec 5, 2025 2

Global Features are All You Need for Image Retrieval and Reranking

Image retrieval systems conventionally use a two-stage paradigm, leveraging global features for initial retrieval and local features for reranking. However, the scalability of this method is often limited due to the significant storage and computation cost incurred by local feature matching in the reranking stage. In this paper, we present SuperGlobal, a novel approach that exclusively employs global features for both stages, improving efficiency without sacrificing accuracy. SuperGlobal introduces key enhancements to the retrieval system, specifically focusing on the global feature extraction and reranking processes. For extraction, we identify sub-optimal performance when the widely-used ArcFace loss and Generalized Mean (GeM) pooling methods are combined and propose several new modules to improve GeM pooling. In the reranking stage, we introduce a novel method to update the global features of the query and top-ranked images by only considering feature refinement with a small set of images, thus being very compute and memory efficient. Our experiments demonstrate substantial improvements compared to the state of the art in standard benchmarks. Notably, on the Revisited Oxford+1M Hard dataset, our single-stage results improve by 7.1%, while our two-stage gain reaches 3.7% with a strong 64,865x speedup. Our two-stage system surpasses the current single-stage state-of-the-art by 16.3%, offering a scalable, accurate alternative for high-performing image retrieval systems with minimal time overhead. Code: https://github.com/ShihaoShao-GH/SuperGlobal.

  • 6 authors
·
Aug 14, 2023 1

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Synthesizing high-quality images from text descriptions is a challenging problem in computer vision and has many practical applications. Samples generated by existing text-to-image approaches can roughly reflect the meaning of the given descriptions, but they fail to contain necessary details and vivid object parts. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) to generate 256x256 photo-realistic images conditioned on text descriptions. We decompose the hard problem into more manageable sub-problems through a sketch-refinement process. The Stage-I GAN sketches the primitive shape and colors of the object based on the given text description, yielding Stage-I low-resolution images. The Stage-II GAN takes Stage-I results and text descriptions as inputs, and generates high-resolution images with photo-realistic details. It is able to rectify defects in Stage-I results and add compelling details with the refinement process. To improve the diversity of the synthesized images and stabilize the training of the conditional-GAN, we introduce a novel Conditioning Augmentation technique that encourages smoothness in the latent conditioning manifold. Extensive experiments and comparisons with state-of-the-arts on benchmark datasets demonstrate that the proposed method achieves significant improvements on generating photo-realistic images conditioned on text descriptions.

  • 7 authors
·
Dec 9, 2016

Interactive3D: Create What You Want by Interactive 3D Generation

3D object generation has undergone significant advancements, yielding high-quality results. However, fall short of achieving precise user control, often yielding results that do not align with user expectations, thus limiting their applicability. User-envisioning 3D object generation faces significant challenges in realizing its concepts using current generative models due to limited interaction capabilities. Existing methods mainly offer two approaches: (i) interpreting textual instructions with constrained controllability, or (ii) reconstructing 3D objects from 2D images. Both of them limit customization to the confines of the 2D reference and potentially introduce undesirable artifacts during the 3D lifting process, restricting the scope for direct and versatile 3D modifications. In this work, we introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process through extensive 3D interaction capabilities. Interactive3D is constructed in two cascading stages, utilizing distinct 3D representations. The first stage employs Gaussian Splatting for direct user interaction, allowing modifications and guidance of the generative direction at any intermediate step through (i) Adding and Removing components, (ii) Deformable and Rigid Dragging, (iii) Geometric Transformations, and (iv) Semantic Editing. Subsequently, the Gaussian splats are transformed into InstantNGP. We introduce a novel (v) Interactive Hash Refinement module to further add details and extract the geometry in the second stage. Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation. Our project webpage is available at https://interactive-3d.github.io/.

  • 6 authors
·
Apr 25, 2024 1

RedOne 2.0: Rethinking Domain-specific LLM Post-Training in Social Networking Services

As a key medium for human interaction and information exchange, social networking services (SNS) pose unique challenges for large language models (LLMs): heterogeneous workloads, fast-shifting norms and slang, and multilingual, culturally diverse corpora that induce sharp distribution shift. Supervised fine-tuning (SFT) can specialize models but often triggers a ``seesaw'' between in-distribution gains and out-of-distribution robustness, especially for smaller models. To address these challenges, we introduce RedOne 2.0, an SNS-oriented LLM trained with a progressive, RL-prioritized post-training paradigm designed for rapid and stable adaptation. The pipeline consist in three stages: (1) Exploratory Learning on curated SNS corpora to establish initial alignment and identify systematic weaknesses; (2) Targeted Fine-Tuning that selectively applies SFT to the diagnosed gaps while mixing a small fraction of general data to mitigate forgetting; and (3) Refinement Learning that re-applies RL with SNS-centric signals to consolidate improvements and harmonize trade-offs across tasks. Across various tasks spanning three categories, our 4B scale model delivers an average improvements about 2.41 over the 7B sub-optimal baseline. Additionally, RedOne 2.0 achieves average performance lift about 8.74 from the base model with less than half the data required by SFT-centric method RedOne, evidencing superior data efficiency and stability at compact scales. Overall, RedOne 2.0 establishes a competitive, cost-effective baseline for domain-specific LLMs in SNS scenario, advancing capability without sacrificing robustness.

  • 12 authors
·
Nov 10, 2025 2

GeoMVD: Geometry-Enhanced Multi-View Generation Model Based on Geometric Information Extraction

Multi-view image generation holds significant application value in computer vision, particularly in domains like 3D reconstruction, virtual reality, and augmented reality. Most existing methods, which rely on extending single images, face notable computational challenges in maintaining cross-view consistency and generating high-resolution outputs. To address these issues, we propose the Geometry-guided Multi-View Diffusion Model, which incorporates mechanisms for extracting multi-view geometric information and adjusting the intensity of geometric features to generate images that are both consistent across views and rich in detail. Specifically, we design a multi-view geometry information extraction module that leverages depth maps, normal maps, and foreground segmentation masks to construct a shared geometric structure, ensuring shape and structural consistency across different views. To enhance consistency and detail restoration during generation, we develop a decoupled geometry-enhanced attention mechanism that strengthens feature focus on key geometric details, thereby improving overall image quality and detail preservation. Furthermore, we apply an adaptive learning strategy that fine-tunes the model to better capture spatial relationships and visual coherence between the generated views, ensuring realistic results. Our model also incorporates an iterative refinement process that progressively improves the output quality through multiple stages of image generation. Finally, a dynamic geometry information intensity adjustment mechanism is proposed to adaptively regulate the influence of geometric data, optimizing overall quality while ensuring the naturalness of generated images. More details can be found on the project page: https://sobeymil.github.io/GeoMVD.com.

  • 3 authors
·
Nov 15, 2025

ThinkSound: Chain-of-Thought Reasoning in Multimodal Large Language Models for Audio Generation and Editing

While end-to-end video-to-audio generation has greatly improved, producing high-fidelity audio that authentically captures the nuances of visual content remains challenging. Like professionals in the creative industries, such generation requires sophisticated reasoning about items such as visual dynamics, acoustic environments, and temporal relationships. We present ThinkSound, a novel framework that leverages Chain-of-Thought (CoT) reasoning to enable stepwise, interactive audio generation and editing for videos. Our approach decomposes the process into three complementary stages: foundational foley generation that creates semantically coherent soundscapes, interactive object-centric refinement through precise user interactions, and targeted editing guided by natural language instructions. At each stage, a multimodal large language model generates contextually aligned CoT reasoning that guides a unified audio foundation model. Furthermore, we introduce AudioCoT, a comprehensive dataset with structured reasoning annotations that establishes connections between visual content, textual descriptions, and sound synthesis. Experiments demonstrate that ThinkSound achieves state-of-the-art performance in video-to-audio generation across both audio metrics and CoT metrics and excels in out-of-distribution Movie Gen Audio benchmark. The demo page is available at https://ThinkSound-Project.github.io.

  • 7 authors
·
Jun 26, 2025 2

Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision

Recent AI-assistant agents, such as ChatGPT, predominantly rely on supervised fine-tuning (SFT) with human annotations and reinforcement learning from human feedback (RLHF) to align the output of large language models (LLMs) with human intentions, ensuring they are helpful, ethical, and reliable. However, this dependence can significantly constrain the true potential of AI-assistant agents due to the high cost of obtaining human supervision and the related issues on quality, reliability, diversity, self-consistency, and undesirable biases. To address these challenges, we propose a novel approach called SELF-ALIGN, which combines principle-driven reasoning and the generative power of LLMs for the self-alignment of AI agents with minimal human supervision. Our approach encompasses four stages: first, we use an LLM to generate synthetic prompts, and a topic-guided method to augment the prompt diversity; second, we use a small set of human-written principles for AI models to follow, and guide the LLM through in-context learning from demonstrations (of principles application) to produce helpful, ethical, and reliable responses to user's queries; third, we fine-tune the original LLM with the high-quality self-aligned responses so that the resulting model can generate desirable responses for each query directly without the principle set and the demonstrations anymore; and finally, we offer a refinement step to address the issues of overly-brief or indirect responses. Applying SELF-ALIGN to the LLaMA-65b base language model, we develop an AI assistant named Dromedary. With fewer than 300 lines of human annotations (including < 200 seed prompts, 16 generic principles, and 5 exemplars for in-context learning). Dromedary significantly surpasses the performance of several state-of-the-art AI systems, including Text-Davinci-003 and Alpaca, on benchmark datasets with various settings.

  • 8 authors
·
May 4, 2023 5

Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms

In the context of few-shot classification, the goal is to train a classifier using a limited number of samples while maintaining satisfactory performance. However, traditional metric-based methods exhibit certain limitations in achieving this objective. These methods typically rely on a single distance value between the query feature and support feature, thereby overlooking the contribution of shallow features. To overcome this challenge, we propose a novel approach in this paper. Our approach involves utilizing a multi-output embedding network that maps samples into distinct feature spaces. The proposed method extracts feature vectors at different stages, enabling the model to capture both global and abstract features. By utilizing these diverse feature spaces, our model enhances its performance. Moreover, employing a self-attention mechanism improves the refinement of features at each stage, leading to even more robust representations and improved overall performance. Furthermore, assigning learnable weights to each stage significantly improved performance and results. We conducted comprehensive evaluations on the MiniImageNet and FC100 datasets, specifically in the 5-way 1-shot and 5-way 5-shot scenarios. Additionally, we performed cross-domain tasks across eight benchmark datasets, achieving high accuracy in the testing domains. These evaluations demonstrate the efficacy of our proposed method in comparison to state-of-the-art approaches. https://github.com/FatemehAskari/MSENet

  • 3 authors
·
Sep 12, 2024

CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages

The driving factors behind the development of large language models (LLMs) with impressive learning capabilities are their colossal model sizes and extensive training datasets. Along with the progress in natural language processing, LLMs have been frequently made accessible to the public to foster deeper investigation and applications. However, when it comes to training datasets for these LLMs, especially the recent state-of-the-art models, they are often not fully disclosed. Creating training data for high-performing LLMs involves extensive cleaning and deduplication to ensure the necessary level of quality. The lack of transparency for training data has thus hampered research on attributing and addressing hallucination and bias issues in LLMs, hindering replication efforts and further advancements in the community. These challenges become even more pronounced in multilingual learning scenarios, where the available multilingual text datasets are often inadequately collected and cleaned. Consequently, there is a lack of open-source and readily usable dataset to effectively train LLMs in multiple languages. To overcome this issue, we present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for LLM development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. CulturaX is fully released to the public in HuggingFace to facilitate research and advancements in multilingual LLMs: https://huggingface.co/datasets/uonlp/CulturaX.

  • 8 authors
·
Sep 17, 2023 4

AudioSetCaps: An Enriched Audio-Caption Dataset using Automated Generation Pipeline with Large Audio and Language Models

With the emergence of audio-language models, constructing large-scale paired audio-language datasets has become essential yet challenging for model development, primarily due to the time-intensive and labour-heavy demands involved. While large language models (LLMs) have improved the efficiency of synthetic audio caption generation, current approaches struggle to effectively extract and incorporate detailed audio information. In this paper, we propose an automated pipeline that integrates audio-language models for fine-grained content extraction, LLMs for synthetic caption generation, and a contrastive language-audio pretraining (CLAP) model-based refinement process to improve the quality of captions. Specifically, we employ prompt chaining techniques in the content extraction stage to obtain accurate and fine-grained audio information, while we use the refinement process to mitigate potential hallucinations in the generated captions. Leveraging the AudioSet dataset and the proposed approach, we create AudioSetCaps, a dataset comprising 1.9 million audio-caption pairs, the largest audio-caption dataset at the time of writing. The models trained with AudioSetCaps achieve state-of-the-art performance on audio-text retrieval with R@1 scores of 46.3% for text-to-audio and 59.7% for audio-to-text retrieval and automated audio captioning with the CIDEr score of 84.8. As our approach has shown promising results with AudioSetCaps, we create another dataset containing 4.1 million synthetic audio-language pairs based on the Youtube-8M and VGGSound datasets. To facilitate research in audio-language learning, we have made our pipeline, datasets with 6 million audio-language pairs, and pre-trained models publicly available at https://github.com/JishengBai/AudioSetCaps.

  • 8 authors
·
Nov 28, 2024

Large Language Model-Powered Smart Contract Vulnerability Detection: New Perspectives

This paper provides a systematic analysis of the opportunities, challenges, and potential solutions of harnessing Large Language Models (LLMs) such as GPT-4 to dig out vulnerabilities within smart contracts based on our ongoing research. For the task of smart contract vulnerability detection, achieving practical usability hinges on identifying as many true vulnerabilities as possible while minimizing the number of false positives. Nonetheless, our empirical study reveals contradictory yet interesting findings: generating more answers with higher randomness largely boosts the likelihood of producing a correct answer but inevitably leads to a higher number of false positives. To mitigate this tension, we propose an adversarial framework dubbed GPTLens that breaks the conventional one-stage detection into two synergistic stages - generation and discrimination, for progressive detection and refinement, wherein the LLM plays dual roles, i.e., auditor and critic, respectively. The goal of auditor is to yield a broad spectrum of vulnerabilities with the hope of encompassing the correct answer, whereas the goal of critic that evaluates the validity of identified vulnerabilities is to minimize the number of false positives. Experimental results and illustrative examples demonstrate that auditor and critic work together harmoniously to yield pronounced improvements over the conventional one-stage detection. GPTLens is intuitive, strategic, and entirely LLM-driven without relying on specialist expertise in smart contracts, showcasing its methodical generality and potential to detect a broad spectrum of vulnerabilities. Our code is available at: https://github.com/git-disl/GPTLens.

  • 5 authors
·
Oct 2, 2023

Autonomous Deep Agent

This technical brief introduces Deep Agent, an advanced autonomous AI system designed to manage complex multi-phase tasks through a novel hierarchical task management architecture. The system's foundation is built on our Hierarchical Task DAG (HTDAG) framework, which dynamically decomposes high-level objectives into manageable sub-tasks while rigorously maintaining dependencies and execution coherence. Deep Agent advances beyond traditional agent systems through three key innovations: First, it implements a recursive two-stage planner-executor architecture that enables continuous task refinement and adaptation as circumstances change. Second, it features an Autonomous API & Tool Creation (AATC) system that automatically generates reusable components from UI interactions, substantially reducing operational costs for similar tasks. Third, it incorporates Prompt Tweaking Engine and Autonomous Prompt Feedback Learning components that optimize Large Language Model prompts for specific scenarios, enhancing both inference accuracy and operational stability. These components are integrated to form a service infrastructure that manages user contexts, handles complex task dependencies, and orchestrates end-to-end agentic workflow execution. Through this sophisticated architecture, Deep Agent establishes a novel paradigm in self-governing AI systems, demonstrating robust capability to independently handle intricate, multi-step tasks while maintaining consistent efficiency and reliability through continuous self-optimization.

  • 5 authors
·
Feb 10, 2025

Towards Realistic Project-Level Code Generation via Multi-Agent Collaboration and Semantic Architecture Modeling

In recent years, Large Language Models (LLMs) have achieved remarkable progress in automated code generation. In real-world software engineering, the growing demand for rapid iteration and continuous delivery underscores the importance of project-level code generation, where LLMs are expected to generate complete software projects directly from complex user requirements. Although existing studies have made initial explorations, they still face key limitations, including unrealistic datasets and unreliable evaluation metrics that fail to reflect real-world complexity, the semantic gap between human-written requirements and machine-interpretable structures, and difficulties in managing hierarchical dependencies and maintaining quality throughout the generation process. To address these limitations, we first introduce CodeProjectEval, a project-level code generation dataset built from 18 real-world repositories with 12.7 files and 2,388.6 lines of code per task on average, supplemented with documentation and executable test cases for automatic evaluation. We further propose ProjectGen, a multi-agent framework that decomposes projects into architecture design, skeleton generation, and code filling stages with iterative refinement and memory-based context management. Within this framework, we introduce the Semantic Software Architecture Tree (SSAT), a structured and semantically rich representation that effectively bridges user requirements and source code implementation. Experiments show that ProjectGen achieves state-of-the-art performance, passing 52/124 test cases on the small-scale project-level code generation dataset DevBench, a 57% improvement over the baseline approaches, and 310 test cases on CodeProjectEval, representing an improvement of roughly tenfold compared to the baselines.

  • 11 authors
·
Nov 5, 2025

MagicColor: Multi-Instance Sketch Colorization

We present MagicColor, a diffusion-based framework for multi-instance sketch colorization. The production of multi-instance 2D line art colorization adheres to an industry-standard workflow, which consists of three crucial stages: the design of line art characters, the coloring of individual objects, and the refinement process. The artists are required to repeat the process of coloring each instance one by one, which is inaccurate and inefficient. Meanwhile, current generative methods fail to solve this task due to the challenge of multi-instance pair data collection. To tackle these challenges, we incorporate three technical designs to ensure precise character detail transcription and achieve multi-instance sketch colorization in a single forward. Specifically, we first propose the self-play training strategy to solve the lack of training data. Then we introduce an instance guider to feed the color of the instance. To achieve accurate color matching, we present fine-grained color matching with edge loss to enhance visual quality. Equipped with the proposed modules, MagicColor enables automatically transforming sketches into vividly-colored images with accurate consistency and multi-instance control. Experiments on our collected datasets show that our model outperforms existing methods regarding chromatic precision. Specifically, our model critically automates the colorization process with zero manual adjustments, so novice users can produce stylistically consistent artwork by providing reference instances and the original line art. Our code and additional details are available at https://yinhan-zhang.github.io/color

  • 5 authors
·
Mar 21, 2025

iLRM: An Iterative Large 3D Reconstruction Model

Feed-forward 3D modeling has emerged as a promising approach for rapid and high-quality 3D reconstruction. In particular, directly generating explicit 3D representations, such as 3D Gaussian splatting, has attracted significant attention due to its fast and high-quality rendering, as well as numerous applications. However, many state-of-the-art methods, primarily based on transformer architectures, suffer from severe scalability issues because they rely on full attention across image tokens from multiple input views, resulting in prohibitive computational costs as the number of views or image resolution increases. Toward a scalable and efficient feed-forward 3D reconstruction, we introduce an iterative Large 3D Reconstruction Model (iLRM) that generates 3D Gaussian representations through an iterative refinement mechanism, guided by three core principles: (1) decoupling the scene representation from input-view images to enable compact 3D representations; (2) decomposing fully-attentional multi-view interactions into a two-stage attention scheme to reduce computational costs; and (3) injecting high-resolution information at every layer to achieve high-fidelity reconstruction. Experimental results on widely used datasets, such as RE10K and DL3DV, demonstrate that iLRM outperforms existing methods in both reconstruction quality and speed. Notably, iLRM exhibits superior scalability, delivering significantly higher reconstruction quality under comparable computational cost by efficiently leveraging a larger number of input views.

  • 6 authors
·
Jul 31, 2025 2

GORACS: Group-level Optimal Transport-guided Coreset Selection for LLM-based Recommender Systems

Although large language models (LLMs) have shown great potential in recommender systems, the prohibitive computational costs for fine-tuning LLMs on entire datasets hinder their successful deployment in real-world scenarios. To develop affordable and effective LLM-based recommender systems, we focus on the task of coreset selection which identifies a small subset of fine-tuning data to optimize the test loss, thereby facilitating efficient LLMs' fine-tuning. Although there exist some intuitive solutions of subset selection, including distribution-based and importance-based approaches, they often lead to suboptimal performance due to the misalignment with downstream fine-tuning objectives or weak generalization ability caused by individual-level sample selection. To overcome these challenges, we propose GORACS, which is a novel Group-level Optimal tRAnsport-guided Coreset Selection framework for LLM-based recommender systems. GORACS is designed based on two key principles for coreset selection: 1) selecting the subsets that minimize the test loss to align with fine-tuning objectives, and 2) enhancing model generalization through group-level data selection. Corresponding to these two principles, GORACS has two key components: 1) a Proxy Optimization Objective (POO) leveraging optimal transport and gradient information to bound the intractable test loss, thus reducing computational costs by avoiding repeated LLM retraining, and 2) a two-stage Initialization-Then-Refinement Algorithm (ITRA) for efficient group-level selection. Our extensive experiments across diverse recommendation datasets and tasks validate that GORACS significantly reduces fine-tuning costs of LLMs while achieving superior performance over the state-of-the-art baselines and full data training. The source code of GORACS are available at https://github.com/Mithas-114/GORACS.

  • 5 authors
·
Jun 4, 2025

RoRA-VLM: Robust Retrieval-Augmented Vision Language Models

Current vision-language models (VLMs) still exhibit inferior performance on knowledge-intensive tasks, primarily due to the challenge of accurately encoding all the associations between visual objects and scenes to their corresponding entities and background knowledge. While retrieval augmentation methods offer an efficient way to integrate external knowledge, extending them to vision-language domain presents unique challenges in (1) precisely retrieving relevant information from external sources due to the inherent discrepancy within the multimodal queries, and (2) being resilient to the irrelevant, extraneous and noisy information contained in the retrieved multimodal knowledge snippets. In this work, we introduce RORA-VLM, a novel and robust retrieval augmentation framework specifically tailored for VLMs, with two key innovations: (1) a 2-stage retrieval process with image-anchored textual-query expansion to synergistically combine the visual and textual information in the query and retrieve the most relevant multimodal knowledge snippets; and (2) a robust retrieval augmentation method that strengthens the resilience of VLMs against irrelevant information in the retrieved multimodal knowledge by injecting adversarial noises into the retrieval-augmented training process, and filters out extraneous visual information, such as unrelated entities presented in images, via a query-oriented visual token refinement strategy. We conduct extensive experiments to validate the effectiveness and robustness of our proposed methods on three widely adopted benchmark datasets. Our results demonstrate that with a minimal amount of training instance, RORA-VLM enables the base model to achieve significant performance improvement and constantly outperform state-of-the-art retrieval-augmented VLMs on all benchmarks while also exhibiting a novel zero-shot domain transfer capability.

  • 8 authors
·
Oct 11, 2024

TempFlow-GRPO: When Timing Matters for GRPO in Flow Models

Recent flow matching models for text-to-image generation have achieved remarkable quality, yet their integration with reinforcement learning for human preference alignment remains suboptimal, hindering fine-grained reward-based optimization. We observe that the key impediment to effective GRPO training of flow models is the temporal uniformity assumption in existing approaches: sparse terminal rewards with uniform credit assignment fail to capture the varying criticality of decisions across generation timesteps, resulting in inefficient exploration and suboptimal convergence. To remedy this shortcoming, we introduce TempFlow-GRPO (Temporal Flow GRPO), a principled GRPO framework that captures and exploits the temporal structure inherent in flow-based generation. TempFlow-GRPO introduces two key innovations: (i) a trajectory branching mechanism that provides process rewards by concentrating stochasticity at designated branching points, enabling precise credit assignment without requiring specialized intermediate reward models; and (ii) a noise-aware weighting scheme that modulates policy optimization according to the intrinsic exploration potential of each timestep, prioritizing learning during high-impact early stages while ensuring stable refinement in later phases. These innovations endow the model with temporally-aware optimization that respects the underlying generative dynamics, leading to state-of-the-art performance in human preference alignment and standard text-to-image benchmarks.

  • 8 authors
·
Aug 6, 2025 2