73 Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries. 27 authors · Jun 12, 2025 4
1 Position: Olfaction Standardization is Essential for the Advancement of Embodied Artificial Intelligence Despite extraordinary progress in artificial intelligence (AI), modern systems remain incomplete representations of human cognition. Vision, audition, and language have received disproportionate attention due to well-defined benchmarks, standardized datasets, and consensus-driven scientific foundations. In contrast, olfaction - a high-bandwidth, evolutionarily critical sense - has been largely overlooked. This omission presents a foundational gap in the construction of truly embodied and ethically aligned super-human intelligence. We argue that the exclusion of olfactory perception from AI architectures is not due to irrelevance but to structural challenges: unresolved scientific theories of smell, heterogeneous sensor technologies, lack of standardized olfactory datasets, absence of AI-oriented benchmarks, and difficulty in evaluating sub-perceptual signal processing. These obstacles have hindered the development of machine olfaction despite its tight coupling with memory, emotion, and contextual reasoning in biological systems. In this position paper, we assert that meaningful progress toward general and embodied intelligence requires serious investment in olfactory research by the AI community. We call for cross-disciplinary collaboration - spanning neuroscience, robotics, machine learning, and ethics - to formalize olfactory benchmarks, develop multimodal datasets, and define the sensory capabilities necessary for machines to understand, navigate, and act within human environments. Recognizing olfaction as a core modality is essential not only for scientific completeness, but for building AI systems that are ethically grounded in the full scope of the human experience. 4 authors · May 31, 2025