new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

EinHops: Einsum Notation for Expressive Homomorphic Operations on RNS-CKKS Tensors

Fully Homomorphic Encryption (FHE) is an encryption scheme that allows for computation to be performed directly on encrypted data, effectively closing the loop on secure and outsourced computing. Data is encrypted not only during rest and transit, but also during processing. However, FHE provides a limited instruction set: SIMD addition, SIMD multiplication, and cyclic rotation of 1-D vectors. This restriction makes performing multi-dimensional tensor operations challenging. Practitioners must pack these tensors into 1-D vectors and map tensor operations onto this one-dimensional layout rather than their traditional nested structure. And while prior systems have made significant strides in automating this process, they often hide critical packing decisions behind layers of abstraction, making debugging, optimizing, and building on top of these systems difficult. In this work, we approach multi-dimensional tensor operations in FHE through Einstein summation (einsum) notation. Einsum notation explicitly encodes dimensional structure and operations in its syntax, naturally exposing how tensors should be packed and transformed. We decompose einsum expressions into a fixed set of FHE-friendly operations. We implement our design and present EinHops, a minimalist system that factors einsum expressions into a fixed sequence of FHE operations. EinHops enables developers to perform encrypted tensor operations using FHE while maintaining full visibility into the underlying packing strategy. We evaluate EinHops on a range of tensor operations from a simple transpose to complex multi-dimensional contractions. We show that the explicit nature of einsum notation allows us to build an FHE tensor system that is simple, general, and interpretable. We open-source EinHops at the following repository: https://github.com/baahl-nyu/einhops.

  • 3 authors
·
Jul 10, 2025

L2RDaS: Synthesizing 4D Radar Tensors for Model Generalization via Dataset Expansion

4-dimensional (4D) radar is increasingly adopted in autonomous driving for perception tasks, owing to its robustness under adverse weather conditions. To better utilize the spatial information inherent in 4D radar data, recent deep learning methods have transitioned from using sparse point cloud to 4D radar tensors. However, the scarcity of publicly available 4D radar tensor datasets limits model generalization across diverse driving scenarios. Previous methods addressed this by synthesizing radar data, but the outputs did not fully exploit the spatial information characteristic of 4D radar. To overcome these limitations, we propose LiDAR-to-4D radar data synthesis (L2RDaS), a framework that synthesizes spatially informative 4D radar tensors from LiDAR data available in existing autonomous driving datasets. L2RDaS integrates a modified U-Net architecture to effectively capture spatial information and an object information supplement (OBIS) module to enhance reflection fidelity. This framework enables the synthesis of radar tensors across diverse driving scenarios without additional sensor deployment or data collection. L2RDaS improves model generalization by expanding real datasets with synthetic radar tensors, achieving an average increase of 4.25\% in {{AP}_{BEV}} and 2.87\% in {{AP}_{3D}} across three detection models. Additionally, L2RDaS supports ground-truth augmentation (GT-Aug) by embedding annotated objects into LiDAR data and synthesizing them into radar tensors, resulting in further average increases of 3.75\% in {{AP}_{BEV}} and 4.03\% in {{AP}_{3D}}. The implementation will be available at https://github.com/kaist-avelab/K-Radar.

  • 3 authors
·
Mar 5, 2025