new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

PixelCraft: A Multi-Agent System for High-Fidelity Visual Reasoning on Structured Images

Structured images (e.g., charts and geometric diagrams) remain challenging for multimodal large language models (MLLMs), as perceptual slips can cascade into erroneous conclusions. Intermediate visual cues can steer reasoning; however, existing cue-based methods are constrained with low-fidelity image processing and linear, rigid reasoning patterns, limiting their effectiveness on complex structured-image tasks. In this paper, we propose PixelCraft, a novel multi-agent system for high-fidelity image processing and flexible visual reasoning on structured images. The system comprises a dispatcher, a planner, a reasoner, critics, and a set of visual tool agents. To achieve high-fidelity processing, we construct a high-quality corpus and fine-tune an MLLM into a grounding model, whose pixel-level localizations are integrated with traditional computer vision (CV) algorithms in tool agents. Building on this foundation, PixelCraft facilitates flexible visual reasoning through a dynamic three-stage workflow of tool selection, agent discussion, and self-criticism. Moreover, unlike prior linear reasoning patterns that simply append historical images, PixelCraft maintains an image memory to allow the planner to adaptively revisit earlier visual steps, explore alternative reasoning branches, and dynamically adjust the reasoning trajectory during discussion. Extensive experiments on challenging chart and geometry benchmarks demonstrate that PixelCraft significantly improves visual reasoning performance for advanced MLLMs, setting a new standard for structured image reasoning. Our code will be available at https://github.com/microsoft/PixelCraft.

MicrosoftResearch Microsoft Research
·
Sep 29, 2025 2

OpenThinkIMG: Learning to Think with Images via Visual Tool Reinforcement Learning

While humans can flexibly leverage interactive visual cognition for complex problem-solving, enabling Large Vision-Language Models (LVLMs) to learn similarly adaptive behaviors with visual tools remains challenging. A significant hurdle is the current lack of standardized infrastructure, which hinders integrating diverse tools, generating rich interaction data, and training robust agents effectively. To address these gaps, we introduce OpenThinkIMG, the first open-source, comprehensive end-to-end framework for tool-augmented LVLMs. It features standardized vision tool interfaces, scalable trajectory generation for policy initialization, and a flexible training environment. Furthermore, considering supervised fine-tuning (SFT) on static demonstrations offers limited policy generalization for dynamic tool invocation, we propose a novel reinforcement learning (RL) framework V-ToolRL to train LVLMs to learn adaptive policies for invoking external vision tools. V-ToolRL enables LVLMs to autonomously discover optimal tool-usage strategies by directly optimizing for task success using feedback from tool interactions. We empirically validate V-ToolRL on challenging chart reasoning tasks. Our RL-trained agent, built upon a Qwen2-VL-2B, significantly outperforms its SFT-initialized counterpart (+28.83 points) and surpasses established supervised tool-learning baselines like Taco and CogCom by an average of +12.7 points. Notably, it also surpasses prominent closed-source models like GPT-4.1 by +8.68 accuracy points. We hope OpenThinkIMG can serve as a foundational framework for advancing dynamic, tool-augmented visual reasoning, helping the community develop AI agents that can genuinely "think with images".

  • 11 authors
·
May 13, 2025 3

CodeV: Code with Images for Faithful Visual Reasoning via Tool-Aware Policy Optimization

Agentic vision-language models are increasingly trained to "think with images" by calling image operations. However, we show that high final-answer accuracy often hides unfaithful visual reasoning: models may invoke tools on irrelevant regions or ignore tool outputs entirely, yet still guess the correct answer. In this work, we first propose a faithfulness evaluation protocol that measures whether intermediate visual tool outputs (e.g., crops) actually contain the queried evidence. This reveals that recent visual agents achieve high final-answer accuracy but exhibit low rates of faithful tool-use on visual search benchmarks. We then introduce CodeV, a code-based visual agent trained with Tool-Aware Policy Optimization (TAPO). TAPO is a process-level RL framework that augments GRPO with dense rewards defined directly on visual tool inputs and outputs, rather than on chain-of-thought tokens, making supervision easier to verify and less susceptible to reward hacking. CodeV represents visual tools as executable Python code, and TAPO assigns step-wise rewards based solely on the question and tool output, encouraging both necessary and evidence-consistent tool use. In a two-stage SFT+RL pipeline, CodeV achieves competitive or superior accuracy while substantially increasing faithful tool-use rates on related visual search benchmarks. Beyond visual search, CodeV attains strong performance on a range of multimodal reasoning and math benchmarks, suggesting that explicitly supervising intermediate tool behavior is crucial for building trustworthy, agentic visual reasoning systems.

umich University of Michigan
·
Nov 24, 2025 2

Transductive Visual Programming: Evolving Tool Libraries from Experience for Spatial Reasoning

Spatial reasoning in 3D scenes requires precise geometric calculations that challenge vision-language models. Visual programming addresses this by decomposing problems into steps calling specialized tools, yet existing methods rely on either fixed toolsets or speculative tool induction before solving problems, resulting in suboptimal programs and poor utilization of induced tools. We present Transductive Visual Programming (TVP), a novel framework that builds new tools from its own experience rather than speculation. TVP first solves problems using basic tools while accumulating experiential solutions into an Example Library, then abstracts recurring patterns from these programs into reusable higher-level tools for an evolving Tool Library. This allows TVP to tackle new problems with increasingly powerful tools learned from experience. On Omni3D-Bench, TVP achieves state-of-the-art performance, outperforming GPT-4o by 22% and the previous best visual programming system by 11%. Our transductively learned tools are used 5x more frequently as core program dependency than inductively created ones, demonstrating more effective tool discovery and reuse. The evolved tools also show strong generalization to unseen spatial tasks, achieving superior performance on benchmarks from SpatialScore-Hard collection without any testset-specific modification. Our work establishes experience-driven transductive tool creation as a powerful paradigm for building self-evolving visual programming agents that effectively tackle challenging spatial reasoning tasks. We release our code at https://transductive-visualprogram.github.io/.

  • 5 authors
·
Dec 23, 2025

VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use

While vision-language models (VLMs) have demonstrated remarkable performance across various tasks combining textual and visual information, they continue to struggle with fine-grained visual perception tasks that require detailed pixel-level analysis. Effectively eliciting comprehensive reasoning from VLMs on such intricate visual elements remains an open challenge. In this paper, we present VipAct, an agent framework that enhances VLMs by integrating multi-agent collaboration and vision expert models, enabling more precise visual understanding and comprehensive reasoning. VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks such as image captioning and vision expert models that provide high-precision perceptual information. This multi-agent approach allows VLMs to better perform fine-grained visual perception tasks by synergizing planning, reasoning, and tool use. We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements over state-of-the-art baselines across all tasks. Furthermore, comprehensive ablation studies reveal the critical role of multi-agent collaboration in eliciting more detailed System-2 reasoning and highlight the importance of image input for task planning. Additionally, our error analysis identifies patterns of VLMs' inherent limitations in visual perception, providing insights into potential future improvements. VipAct offers a flexible and extensible framework, paving the way for more advanced visual perception systems across various real-world applications.

  • 10 authors
·
Oct 21, 2024

SeaView: Software Engineering Agent Visual Interface for Enhanced Workflow

Auto-regressive LLM-based software engineering (SWE) agents, henceforth SWE agents, have made tremendous progress (>60% on SWE-Bench Verified) on real-world coding challenges including GitHub issue resolution. SWE agents use a combination of reasoning, environment interaction and self-reflection to resolve issues thereby generating "trajectories". Analysis of SWE agent trajectories is difficult, not only as they exceed LLM sequence length (sometimes, greater than 128k) but also because it involves a relatively prolonged interaction between an LLM and the environment managed by the agent. In case of an agent error, it can be hard to decipher, locate and understand its scope. Similarly, it can be hard to track improvements or regression over multiple runs or experiments. While a lot of research has gone into making these SWE agents reach state-of-the-art, much less focus has been put into creating tools to help analyze and visualize agent output. We propose a novel tool called SeaView: Software Engineering Agent Visual Interface for Enhanced Workflow, with a vision to assist SWE-agent researchers to visualize and inspect their experiments. SeaView's novel mechanisms help compare experimental runs with varying hyper-parameters or LLMs, and quickly get an understanding of LLM or environment related problems. Based on our user study, experienced researchers spend between 10 and 30 minutes to gather the information provided by SeaView, while researchers with little experience can spend between 30 minutes to 1 hour to diagnose their experiment.

  • 5 authors
·
Apr 11, 2025

MMSearch-Plus: A Simple Yet Challenging Benchmark for Multimodal Browsing Agents

Large multimodal language models (MLLMs) are increasingly deployed as web agents, yet many multimodal browsing benchmarks can be solved by shallow, fixed workflows that lean on high-recall image search and nearby text-masking the genuinely multimodal challenges of fine-grained visual reasoning, provenance verification, and long-horizon tool use. We introduce MMSearch-Plus, a benchmark of 311 tasks that highly demand multimodal understanding while preserving the difficulty profile of strong text-only browsing suites. Each item is constructed to contain multiple weak, localized visual signals that must be extracted, propagated through iterative text-image search, and cross-validated under retrieval noise before answering. Our curation procedure, Spatial-Temporal Extrapolation, seeds questions whose answers require extrapolating from spatial cues (micro-text, part-level appearance, layouts, signage) and temporal traces (broadcast overlays, seasonal context) to out-of-image facts such as events, dates, and venues. We provide a model-agnostic agent framework with browsing tools and evaluate a range of closed and open MLLMs. The strongest agent (o3) attains 15.1% without search and 36.0% accuracy with rollout under our framework, while a strong open-source model (Qwen-2.5-VL-72B-Instruct) achieves 0.0% without search and 6.9% after 20 rounds of search. Beyond answer accuracy, we assess bounding-box production and cropped-image search, and conduct an error analysis that surfaces failures in source verification, part-based reasoning, and long-horizon planning.

  • 10 authors
·
Aug 29, 2025 1

Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining

Digital agents are increasingly employed to automate tasks in interactive digital environments such as web pages, software applications, and operating systems. While text-based agents built on Large Language Models (LLMs) often require frequent updates due to platform-specific APIs, visual agents leveraging Multimodal Large Language Models (MLLMs) offer enhanced adaptability by interacting directly with Graphical User Interfaces (GUIs). However, these agents face significant challenges in visual perception, particularly when handling high-resolution, visually complex digital environments. This paper introduces Iris, a foundational visual agent that addresses these challenges through two key innovations: Information-Sensitive Cropping (ISC) and Self-Refining Dual Learning (SRDL). ISC dynamically identifies and prioritizes visually dense regions using a edge detection algorithm, enabling efficient processing by allocating more computational resources to areas with higher information density. SRDL enhances the agent's ability to handle complex tasks by leveraging a dual-learning loop, where improvements in referring (describing UI elements) reinforce grounding (locating elements) and vice versa, all without requiring additional annotated data. Empirical evaluations demonstrate that Iris achieves state-of-the-art performance across multiple benchmarks with only 850K GUI annotations, outperforming methods using 10x more training data. These improvements further translate to significant gains in both web and OS agent downstream tasks.

  • 10 authors
·
Dec 13, 2024

InSight-o3: Empowering Multimodal Foundation Models with Generalized Visual Search

The ability for AI agents to "think with images" requires a sophisticated blend of reasoning and perception. However, current open multimodal agents still largely fall short on the reasoning aspect crucial for real-world tasks like analyzing documents with dense charts/diagrams and navigating maps. To address this gap, we introduce O3-Bench, a new benchmark designed to evaluate multimodal reasoning with interleaved attention to visual details. O3-Bench features challenging problems that require agents to piece together subtle visual information from distinct image areas through multi-step reasoning. The problems are highly challenging even for frontier systems like OpenAI o3, which only obtains 40.8% accuracy on O3-Bench. To make progress, we propose InSight-o3, a multi-agent framework consisting of a visual reasoning agent (vReasoner) and a visual search agent (vSearcher) for which we introduce the task of generalized visual search -- locating relational, fuzzy, or conceptual regions described in free-form language, beyond just simple objects or figures in natural images. We then present a multimodal LLM purpose-trained for this task via reinforcement learning. As a plug-and-play agent, our vSearcher empowers frontier multimodal models (as vReasoners), significantly improving their performance on a wide range of benchmarks. This marks a concrete step towards powerful o3-like open systems. Our code and dataset can be found at https://github.com/m-Just/InSight-o3 .

  • 10 authors
·
Dec 21, 2025 3

UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction

Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enhance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks-Element Grounding, Layout Grounding, and Action Prediction-with well-defined metrics to rigorously evaluate agents' performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer use agents. By releasing UI-Vision as open-source, we aim to advance the development of more capable agents for real-world desktop tasks.

  • 14 authors
·
Mar 19, 2025

VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents

Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents. These agents are postulated to excel across a myriad of tasks, potentially approaching general artificial intelligence. However, existing benchmarks fail to sufficiently challenge or showcase the full potential of LMMs in complex, real-world environments. To address this gap, we introduce VisualAgentBench (VAB), a comprehensive and pioneering benchmark specifically designed to train and evaluate LMMs as visual foundation agents across diverse scenarios, including Embodied, Graphical User Interface, and Visual Design, with tasks formulated to probe the depth of LMMs' understanding and interaction capabilities. Through rigorous testing across nine proprietary LMM APIs and eight open models, we demonstrate the considerable yet still developing agent capabilities of these models. Additionally, VAB constructs a trajectory training set constructed through hybrid methods including Program-based Solvers, LMM Agent Bootstrapping, and Human Demonstrations, promoting substantial performance improvements in LMMs through behavior cloning. Our work not only aims to benchmark existing models but also provides a solid foundation for future development into visual foundation agents. Code, train \& test data, and part of fine-tuned open LMMs are available at https://github.com/THUDM/VisualAgentBench.

  • 30 authors
·
Aug 12, 2024 3

PhysToolBench: Benchmarking Physical Tool Understanding for MLLMs

The ability to use, understand, and create tools is a hallmark of human intelligence, enabling sophisticated interaction with the physical world. For any general-purpose intelligent agent to achieve true versatility, it must also master these fundamental skills. While modern Multimodal Large Language Models (MLLMs) leverage their extensive common knowledge for high-level planning in embodied AI and in downstream Vision-Language-Action (VLA) models, the extent of their true understanding of physical tools remains unquantified. To bridge this gap, we present PhysToolBench, the first benchmark dedicated to evaluating the comprehension of physical tools by MLLMs. Our benchmark is structured as a Visual Question Answering (VQA) dataset comprising over 1,000 image-text pairs. It assesses capabilities across three distinct difficulty levels: (1) Tool Recognition: Requiring the recognition of a tool's primary function. (2) Tool Understanding: Testing the ability to grasp the underlying principles of a tool's operation. (3) Tool Creation: Challenging the model to fashion a new tool from surrounding objects when conventional options are unavailable. Our comprehensive evaluation of 32 MLLMs-spanning proprietary, open-source, specialized embodied, and backbones in VLAs-reveals a significant deficiency in tool understanding. Furthermore, we provide an in-depth analysis and propose preliminary solutions. Code and dataset are publicly available.

  • 9 authors
·
Oct 10, 2025 2

VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks

Autonomous agents capable of planning, reasoning, and executing actions on the web offer a promising avenue for automating computer tasks. However, the majority of existing benchmarks primarily focus on text-based agents, neglecting many natural tasks that require visual information to effectively solve. Given that most computer interfaces cater to human perception, visual information often augments textual data in ways that text-only models struggle to harness effectively. To bridge this gap, we introduce VisualWebArena, a benchmark designed to assess the performance of multimodal web agents on realistic visually grounded tasks. VisualWebArena comprises of a set of diverse and complex web-based tasks that evaluate various capabilities of autonomous multimodal agents. To perform on this benchmark, agents need to accurately process image-text inputs, interpret natural language instructions, and execute actions on websites to accomplish user-defined objectives. We conduct an extensive evaluation of state-of-the-art LLM-based autonomous agents, including several multimodal models. Through extensive quantitative and qualitative analysis, we identify several limitations of text-only LLM agents, and reveal gaps in the capabilities of state-of-the-art multimodal language agents. VisualWebArena provides a framework for evaluating multimodal autonomous language agents, and offers insights towards building stronger autonomous agents for the web. Our code, baseline models, and data is publicly available at https://jykoh.com/vwa.

  • 10 authors
·
Jan 24, 2024

DeepEyesV2: Toward Agentic Multimodal Model

Agentic multimodal models should not only comprehend text and images, but also actively invoke external tools, such as code execution environments and web search, and integrate these operations into reasoning. In this work, we introduce DeepEyesV2 and explore how to build an agentic multimodal model from the perspectives of data construction, training methods, and model evaluation. We observe that direct reinforcement learning alone fails to induce robust tool-use behavior. This phenomenon motivates a two-stage training pipeline: a cold-start stage to establish tool-use patterns, and reinforcement learning stage to further refine tool invocation. We curate a diverse, moderately challenging training dataset, specifically including examples where tool use is beneficial. We further introduce RealX-Bench, a comprehensive benchmark designed to evaluate real-world multimodal reasoning, which inherently requires the integration of multiple capabilities, including perception, search, and reasoning. We evaluate DeepEyesV2 on RealX-Bench and other representative benchmarks, demonstrating its effectiveness across real-world understanding, mathematical reasoning, and search-intensive tasks. Moreover, DeepEyesV2 exhibits task-adaptive tool invocation, tending to use image operations for perception tasks and numerical computations for reasoning tasks. Reinforcement learning further enables complex tool combinations and allows model to selectively invoke tools based on context. We hope our study can provide guidance for community in developing agentic multimodal models.

  • 6 authors
·
Nov 7, 2025 2

MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning

Recently, the astonishing performance of large language models (LLMs) in natural language comprehension and generation tasks triggered lots of exploration of using them as central controllers to build agent systems. Multiple studies focus on bridging the LLMs to external tools to extend the application scenarios. However, the current LLMs' perceiving tool-use ability is limited to a single text query, which may result in ambiguity in understanding the users' real intentions. LLMs are expected to eliminate that by perceiving the visual- or auditory-grounded instructions' information. Therefore, in this paper, we propose MLLM-Tool, a system incorporating open-source LLMs and multi-modal encoders so that the learnt LLMs can be conscious of multi-modal input instruction and then select the function-matched tool correctly. To facilitate the evaluation of the model's capability, we collect a dataset featured by consisting of multi-modal input tools from HuggingFace. Another important feature of our dataset is that our dataset also contains multiple potential choices for the same instruction due to the existence of identical functions and synonymous functions, which provides more potential solutions for the same query. The experiments reveal that our MLLM-Tool is capable of recommending appropriate tools for multi-modal instructions. Codes and data are available at https://github.com/MLLM-Tool/MLLM-Tool.

  • 11 authors
·
Jan 19, 2024

ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering

Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts, those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieve the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.

  • 5 authors
·
Oct 6, 2025 3

ShowUI: One Vision-Language-Action Model for GUI Visual Agent

Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.

  • 9 authors
·
Nov 26, 2024 3

MMFactory: A Universal Solution Search Engine for Vision-Language Tasks

With advances in foundational and vision-language models, and effective fine-tuning techniques, a large number of both general and special-purpose models have been developed for a variety of visual tasks. Despite the flexibility and accessibility of these models, no single model is able to handle all tasks and/or applications that may be envisioned by potential users. Recent approaches, such as visual programming and multimodal LLMs with integrated tools aim to tackle complex visual tasks, by way of program synthesis. However, such approaches overlook user constraints (e.g., performance / computational needs), produce test-time sample-specific solutions that are difficult to deploy, and, sometimes, require low-level instructions that maybe beyond the abilities of a naive user. To address these limitations, we introduce MMFactory, a universal framework that includes model and metrics routing components, acting like a solution search engine across various available models. Based on a task description and few sample input-output pairs and (optionally) resource and/or performance constraints, MMFactory can suggest a diverse pool of programmatic solutions by instantiating and combining visio-lingual tools from its model repository. In addition to synthesizing these solutions, MMFactory also proposes metrics and benchmarks performance / resource characteristics, allowing users to pick a solution that meets their unique design constraints. From the technical perspective, we also introduced a committee-based solution proposer that leverages multi-agent LLM conversation to generate executable, diverse, universal, and robust solutions for the user. Experimental results show that MMFactory outperforms existing methods by delivering state-of-the-art solutions tailored to user problem specifications. Project page is available at https://davidhalladay.github.io/mmfactory_demo.

  • 3 authors
·
Dec 23, 2024 2

CoSTAast: Cost-Sensitive Toolpath Agent for Multi-turn Image Editing

Text-to-image models like stable diffusion and DALLE-3 still struggle with multi-turn image editing. We decompose such a task as an agentic workflow (path) of tool use that addresses a sequence of subtasks by AI tools of varying costs. Conventional search algorithms require expensive exploration to find tool paths. While large language models (LLMs) possess prior knowledge of subtask planning, they may lack accurate estimations of capabilities and costs of tools to determine which to apply in each subtask. Can we combine the strengths of both LLMs and graph search to find cost-efficient tool paths? We propose a three-stage approach "CoSTA*" that leverages LLMs to create a subtask tree, which helps prune a graph of AI tools for the given task, and then conducts A* search on the small subgraph to find a tool path. To better balance the total cost and quality, CoSTA* combines both metrics of each tool on every subtask to guide the A* search. Each subtask's output is then evaluated by a vision-language model (VLM), where a failure will trigger an update of the tool's cost and quality on the subtask. Hence, the A* search can recover from failures quickly to explore other paths. Moreover, CoSTA* can automatically switch between modalities across subtasks for a better cost-quality trade-off. We build a novel benchmark of challenging multi-turn image editing, on which CoSTA* outperforms state-of-the-art image-editing models or agents in terms of both cost and quality, and performs versatile trade-offs upon user preference.

  • 4 authors
·
Mar 13, 2025 10

GPT-4V(ision) is a Generalist Web Agent, if Grounded

The recent development on large multimodal models (LMMs), especially GPT-4V(ision) and Gemini, has been quickly expanding the capability boundaries of multimodal models beyond traditional tasks like image captioning and visual question answering. In this work, we explore the potential of LMMs like GPT-4V as a generalist web agent that can follow natural language instructions to complete tasks on any given website. We propose SEEACT, a generalist web agent that harnesses the power of LMMs for integrated visual understanding and acting on the web. We evaluate on the recent MIND2WEB benchmark. In addition to standard offline evaluation on cached websites, we enable a new online evaluation setting by developing a tool that allows running web agents on live websites. We show that GPT-4V presents a great potential for web agents - it can successfully complete 50% of the tasks on live websites if we manually ground its textual plans into actions on the websites. This substantially outperforms text-only LLMs like GPT-4 or smaller models (FLAN-T5 and BLIP-2) specifically fine-tuned for web agents. However, grounding still remains a major challenge. Existing LMM grounding strategies like set-of-mark prompting turns out not effective for web agents, and the best grounding strategy we develop in this paper leverages both the HTML text and visuals. Yet, there is still a substantial gap with oracle grounding, leaving ample room for further improvement.

  • 5 authors
·
Jan 3, 2024 1

PosterGen: Aesthetic-Aware Paper-to-Poster Generation via Multi-Agent LLMs

Multi-agent systems built upon large language models (LLMs) have demonstrated remarkable capabilities in tackling complex compositional tasks. In this work, we apply this paradigm to the paper-to-poster generation problem, a practical yet time-consuming process faced by researchers preparing for conferences. While recent approaches have attempted to automate this task, most neglect core design and aesthetic principles, resulting in posters that require substantial manual refinement. To address these design limitations, we propose PosterGen, a multi-agent framework that mirrors the workflow of professional poster designers. It consists of four collaborative specialized agents: (1) Parser and Curator agents extract content from the paper and organize storyboard; (2) Layout agent maps the content into a coherent spatial layout; (3) Stylist agents apply visual design elements such as color and typography; and (4) Renderer composes the final poster. Together, these agents produce posters that are both semantically grounded and visually appealing. To evaluate design quality, we introduce a vision-language model (VLM)-based rubric that measures layout balance, readability, and aesthetic coherence. Experimental results show that PosterGen consistently matches in content fidelity, and significantly outperforms existing methods in visual designs, generating posters that are presentation-ready with minimal human refinements.

  • 5 authors
·
Aug 23, 2025 3

Visual Agentic Reinforcement Fine-Tuning

A key trend in Large Reasoning Models (e.g., OpenAI's o3) is the native agentic ability to use external tools such as web browsers for searching and writing/executing code for image manipulation to think with images. In the open-source research community, while significant progress has been made in language-only agentic abilities such as function calling and tool integration, the development of multi-modal agentic capabilities that involve truly thinking with images, and their corresponding benchmarks, are still less explored. This work highlights the effectiveness of Visual Agentic Reinforcement Fine-Tuning (Visual-ARFT) for enabling flexible and adaptive reasoning abilities for Large Vision-Language Models (LVLMs). With Visual-ARFT, open-source LVLMs gain the ability to browse websites for real-time information updates and write code to manipulate and analyze input images through cropping, rotation, and other image processing techniques. We also present a Multi-modal Agentic Tool Bench (MAT) with two settings (MAT-Search and MAT-Coding) designed to evaluate LVLMs' agentic search and coding abilities. Our experimental results demonstrate that Visual-ARFT outperforms its baseline by +18.6% F1 / +13.0% EM on MAT-Coding and +10.3% F1 / +8.7% EM on MAT-Search, ultimately surpassing GPT-4o. Visual-ARFT also achieves +29.3 F1% / +25.9% EM gains on existing multi-hop QA benchmarks such as 2Wiki and HotpotQA, demonstrating strong generalization capabilities. Our findings suggest that Visual-ARFT offers a promising path toward building robust and generalizable multimodal agents.

  • 9 authors
·
May 20, 2025 2

ScreenSpot-Pro: GUI Grounding for Professional High-Resolution Computer Use

Recent advancements in Multi-modal Large Language Models (MLLMs) have led to significant progress in developing GUI agents for general tasks such as web browsing and mobile phone use. However, their application in professional domains remains under-explored. These specialized workflows introduce unique challenges for GUI perception models, including high-resolution displays, smaller target sizes, and complex environments. In this paper, we introduce ScreenSpot-Pro, a new benchmark designed to rigorously evaluate the grounding capabilities of MLLMs in high-resolution professional settings. The benchmark comprises authentic high-resolution images from a variety of professional domains with expert annotations. It spans 23 applications across five industries and three operating systems. Existing GUI grounding models perform poorly on this dataset, with the best model achieving only 18.9%. Our experiments reveal that strategically reducing the search area enhances accuracy. Based on this insight, we propose ScreenSeekeR, a visual search method that utilizes the GUI knowledge of a strong planner to guide a cascaded search, achieving state-of-the-art performance with 48.1% without any additional training. We hope that our benchmark and findings will advance the development of GUI agents for professional applications. Code, data and leaderboard can be found at https://gui-agent.github.io/grounding-leaderboard.

  • 8 authors
·
Apr 4, 2025

TheMCPCompany: Creating General-purpose Agents with Task-specific Tools

Since the introduction of the Model Context Protocol (MCP), the number of available tools for Large Language Models (LLMs) has increased significantly. These task-specific tool sets offer an alternative to general-purpose tools such as web browsers, while being easier to develop and maintain than GUIs. However, current general-purpose agents predominantly rely on web browsers for interacting with the environment. Here, we introduce TheMCPCompany, a benchmark for evaluating tool-calling agents on tasks that involve interacting with various real-world services. We use the REST APIs of these services to create MCP servers, which include over 18,000 tools. We also provide manually annotated ground-truth tools for each task. In our experiments, we use the ground truth tools to show the potential of tool-calling agents for both improving performance and reducing costs assuming perfect tool retrieval. Next, we explore agent performance using tool retrieval to study the real-world practicality of tool-based agents. While all models with tool retrieval perform similarly or better than browser-based agents, smaller models cannot take full advantage of the available tools through retrieval. On the other hand, GPT-5's performance with tool retrieval is very close to its performance with ground-truth tools. Overall, our work shows that the most advanced reasoning models are effective at discovering tools in simpler environments, but seriously struggle with navigating complex enterprise environments. TheMCPCompany reveals that navigating tens of thousands of tools and combining them in non-trivial ways to solve complex problems is still a challenging task for current models and requires both better reasoning and better retrieval models.

  • 5 authors
·
Oct 22, 2025 2

Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents

Multimodal large language models (MLLMs) are transforming the capabilities of graphical user interface (GUI) agents, facilitating their transition from controlled simulations to complex, real-world applications across various platforms. However, the effectiveness of these agents hinges on the robustness of their grounding capability. Current GUI agents predominantly utilize text-based representations such as HTML or accessibility trees, which, despite their utility, often introduce noise, incompleteness, and increased computational overhead. In this paper, we advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly take pixel-level operations on the GUI. The key is visual grounding models that can accurately map diverse referring expressions of GUI elements to their coordinates on the GUI across different platforms. We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models. We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots, and use it to train UGround, a strong universal visual grounding model for GUI agents. Empirical results on six benchmarks spanning three categories (grounding, offline agent, and online agent) show that 1) UGround substantially outperforms existing visual grounding models for GUI agents, by up to 20% absolute, and 2) agents with UGround outperform state-of-the-art agents, despite the fact that existing agents use additional text-based input while ours only uses visual perception. These results provide strong support for the feasibility and promises of GUI agents that navigate the digital world as humans do.

  • 8 authors
·
Oct 7, 2024 2

GTA: A Benchmark for General Tool Agents

Significant focus has been placed on integrating large language models (LLMs) with various tools in developing general-purpose agents. This poses a challenge to LLMs' tool-use capabilities. However, there are evident gaps between existing tool-use evaluations and real-world scenarios. Current evaluations often use AI-generated queries, single-step tasks, dummy tools, and text-only interactions, failing to reveal the agents' real-world problem-solving abilities effectively. To address this, we propose GTA, a benchmark for General Tool Agents, featuring three main aspects: (i) Real user queries: human-written queries with simple real-world objectives but implicit tool-use, requiring the LLM to reason the suitable tools and plan the solution steps. (ii) Real deployed tools: an evaluation platform equipped with tools across perception, operation, logic, and creativity categories to evaluate the agents' actual task execution performance. (iii) Real multimodal inputs: authentic image files, such as spatial scenes, web page screenshots, tables, code snippets, and printed/handwritten materials, used as the query contexts to align with real-world scenarios closely. We design 229 real-world tasks and executable tool chains to evaluate mainstream LLMs. Our findings show that real-world user queries are challenging for existing LLMs, with GPT-4 completing less than 50% of the tasks and most LLMs achieving below 25%. This evaluation reveals the bottlenecks in the tool-use capabilities of current LLMs in real-world scenarios, which provides future direction for advancing general-purpose tool agents. The code and dataset are available at https://github.com/open-compass/GTA.

  • 7 authors
·
Jul 11, 2024 3

Tool Documentation Enables Zero-Shot Tool-Usage with Large Language Models

Today, large language models (LLMs) are taught to use new tools by providing a few demonstrations of the tool's usage. Unfortunately, demonstrations are hard to acquire, and can result in undesirable biased usage if the wrong demonstration is chosen. Even in the rare scenario that demonstrations are readily available, there is no principled selection protocol to determine how many and which ones to provide. As tasks grow more complex, the selection search grows combinatorially and invariably becomes intractable. Our work provides an alternative to demonstrations: tool documentation. We advocate the use of tool documentation, descriptions for the individual tool usage, over demonstrations. We substantiate our claim through three main empirical findings on 6 tasks across both vision and language modalities. First, on existing benchmarks, zero-shot prompts with only tool documentation are sufficient for eliciting proper tool usage, achieving performance on par with few-shot prompts. Second, on a newly collected realistic tool-use dataset with hundreds of available tool APIs, we show that tool documentation is significantly more valuable than demonstrations, with zero-shot documentation significantly outperforming few-shot without documentation. Third, we highlight the benefits of tool documentations by tackling image generation and video tracking using just-released unseen state-of-the-art models as tools. Finally, we highlight the possibility of using tool documentation to automatically enable new applications: by using nothing more than the documentation of GroundingDino, Stable Diffusion, XMem, and SAM, LLMs can re-invent the functionalities of the just-released Grounded-SAM and Track Anything models.

  • 8 authors
·
Aug 1, 2023 1

Ponder & Press: Advancing Visual GUI Agent towards General Computer Control

Most existing GUI agents typically depend on non-vision inputs like HTML source code or accessibility trees, limiting their flexibility across diverse software environments and platforms. Current multimodal large language models (MLLMs), which excel at using vision to ground real-world objects, offer a potential alternative. However, they often struggle with accurately localizing GUI elements -- a critical requirement for effective GUI automation -- due to the semantic gap between real-world objects and GUI elements. In this work, we introduce Ponder & Press, a divide-and-conquer framework for general computer control using only visual input. Our approach combines an general-purpose MLLM as an 'interpreter', responsible for translating high-level user instructions into detailed action descriptions, with a GUI-specific MLLM as a 'locator' that precisely locates GUI elements for action placement. By leveraging a purely visual input, our agent offers a versatile, human-like interaction paradigm applicable to a wide range of applications. Ponder & Press locator outperforms existing models by +22.5% on the ScreenSpot GUI grounding benchmark. Both offline and interactive agent benchmarks across various GUI environments -- including web pages, desktop software, and mobile UIs -- demonstrate that Ponder & Press framework achieves state-of-the-art performance, highlighting the potential of visual GUI agents. Refer to the project homepage https://invinciblewyq.github.io/ponder-press-page/

  • 4 authors
·
Dec 2, 2024

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

Recent advancements in tool-equipped Agents (LLMs) have enabled complex tasks like secure database interactions and multi-agent code development. However, scaling tool capacity beyond agent reasoning or model limits remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases, a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool selection for large-scale tool-equipped Agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval, intra-retrieval, and post-retrieval phases, without requiring model fine-tuning. During pre-retrieval, tool documents are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool documents and enables self-reflection. Furthermore, by varying both the total number of tools (tool-M) an Agent has access to and the tool selection threshold (top-k), we address trade-offs between retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmark datasets, respectively (Recall@5).

  • 5 authors
·
Oct 18, 2024

SpaceTools: Tool-Augmented Spatial Reasoning via Double Interactive RL

Vision Language Models (VLMs) demonstrate strong qualitative visual understanding, but struggle with metrically precise spatial reasoning required for embodied applications. The agentic paradigm promises that VLMs can use a wide variety of tools that could augment these capabilities, such as depth estimators, segmentation models, and pose estimators. Yet it remains an open challenge how to realize this vision without solely relying on handcrafted prompting strategies or enforcing fixed, predefined tool pipelines that limit VLMs' ability to discover optimal tool-use patterns. Reinforcement Learning could overcome this gap, but has so far been limited to reasoning with a single visual tool due to the large search space in multi-tool reasoning. We introduce Double Interactive Reinforcement Learning (DIRL), a two-phase training framework where VLMs learn to coordinate multiple tools through interactive exploration and feedback. In the teaching phase, we combine demonstrations from a single tool specialist trained via interactive RL with traces from a frontier model using all tools. In the exploration phase, the model further refines multi-tool coordination through continued RL. Our model, SpaceTools, with tool-augmented spatial reasoning ability, achieves state-of-the-art performance on spatial understanding benchmarks (RoboSpatial-Home, BLINK, BOP-ASK) and demonstrates reliable real-world manipulation using a 7-DOF robot as a tool. DIRL provides substantial improvements over the vanilla SFT (+12% on RoboSpatial) and RL (+16% on RoboSpatial) baselines. Project page: https://spacetools.github.io/.

nvidia NVIDIA
·
Dec 3, 2025 2

ARM-Thinker: Reinforcing Multimodal Generative Reward Models with Agentic Tool Use and Visual Reasoning

Reward models are critical for aligning vision-language systems with human preferences, yet current approaches suffer from hallucination, weak visual grounding, and an inability to use tools for verification, limiting their reliability on complex multimodal reasoning tasks. We present ARM-Thinker, an A}gentic multimodal Reward Model that autonomously invokes external tools (e.g., image cropping, doc page retrieval) to ground judgments in verifiable evidence, replacing static, non-interactive reward scoring. This enables the model to verify fine-grained visual details, cross-reference multi-page evidence, and validate reasoning claims, which are capabilities absent in existing reward models. We train ARM-Thinker with multi-stage reinforcement learning, jointly optimizing tool-calling decisions and judgment accuracy. To evaluate agentic reward modeling, we introduce ARMBench-VL, comprising three benchmarks that assess fine-grained visual grounding (image-level tools), multi-page document understanding (retrieval tools), and instruction following (text-level verification). ARM-Thinker achieves +16.2% average improvement on reward modeling benchmarks, +9.6% on tool-use tasks, and outperforms baselines on multimodal math and logical reasoning benchmarks. Our results demonstrate that agentic capabilities significantly enhance both accuracy and interpretability of reward models.

internlm Intern Large Models
·
Dec 4, 2025 2

DeepAgent: A General Reasoning Agent with Scalable Toolsets

Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.

  • 11 authors
·
Oct 24, 2025 6

DeepEyes: Incentivizing "Thinking with Images" via Reinforcement Learning

Large Vision-Language Models (VLMs) have shown strong capabilities in multimodal understanding and reasoning, yet they are primarily constrained by text-based reasoning processes. However, achieving seamless integration of visual and textual reasoning which mirrors human cognitive processes remains a significant challenge. In particular, effectively incorporating advanced visual input processing into reasoning mechanisms is still an open question. Thus, in this paper, we explore the interleaved multimodal reasoning paradigm and introduce DeepEyes, a model with "thinking with images" capabilities incentivized through end-to-end reinforcement learning without the need for cold-start SFT. Notably, this ability emerges natively within the model itself, leveraging its inherent grounding ability as a tool instead of depending on separate specialized models. Specifically, we propose a tool-use-oriented data selection mechanism and a reward strategy to encourage successful tool-assisted reasoning trajectories. DeepEyes achieves significant performance gains on fine-grained perception and reasoning benchmarks and also demonstrates improvement in grounding, hallucination, and mathematical reasoning tasks. Interestingly, we observe the distinct evolution of tool-calling behavior from initial exploration to efficient and accurate exploitation, and diverse thinking patterns that closely mirror human visual reasoning processes. Code is available at https://github.com/Visual-Agent/DeepEyes.

  • 8 authors
·
May 20, 2025 2

Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling

Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.

  • 9 authors
·
Aug 5, 2025 2

Agent0-VL: Exploring Self-Evolving Agent for Tool-Integrated Vision-Language Reasoning

Vision-language agents have achieved remarkable progress in a variety of multimodal reasoning tasks; however, their learning remains constrained by the limitations of human-annotated supervision. Recent self-rewarding approaches attempt to overcome this constraint by allowing models to act as their own critics or reward providers. Yet, purely text-based self-evaluation struggles to verify complex visual reasoning steps and often suffers from evaluation hallucinations. To address these challenges, inspired by recent advances in tool-integrated reasoning, we propose Agent0-VL, a self-evolving vision-language agent that achieves continual improvement with tool-integrated reasoning. Agent0-VL incorporates tool usage not only into reasoning but also into self-evaluation and self-repair, enabling the model to introspect, verify, and refine its reasoning through evidence-grounded analysis. It unifies two synergistic roles within a single LVLM: a Solver that performs multi-turn tool-integrated reasoning, and a Verifier that generates structured feedback and fine-grained self-rewards through tool-grounded critique. These roles interact through a Self-Evolving Reasoning Cycle, where tool-based verification and reinforcement learning jointly align the reasoning and evaluation distributions for stable self-improvement. Through this zero-external-reward evolution, Agent0-VL aligns its reasoning and verification behaviors without any human annotation or external reward models, achieving continual self-improvement. Experiments on geometric problem solving and visual scientific analysis show that Agent0-VL achieves an 12.5% improvement over the base model. Our code is available at https://github.com/aiming-lab/Agent0/Agent0-VL{this https URL}.

GraphiMind: LLM-centric Interface for Information Graphics Design

Information graphics are pivotal in effective information dissemination and storytelling. However, creating such graphics is extremely challenging for non-professionals, since the design process requires multifaceted skills and comprehensive knowledge. Thus, despite the many available authoring tools, a significant gap remains in enabling non-experts to produce compelling information graphics seamlessly, especially from scratch. Recent breakthroughs show that Large Language Models (LLMs), especially when tool-augmented, can autonomously engage with external tools, making them promising candidates for enabling innovative graphic design applications. In this work, we propose a LLM-centric interface with the agent GraphiMind for automatic generation, recommendation, and composition of information graphics design resources, based on user intent expressed through natural language. Our GraphiMind integrates a Textual Conversational Interface, powered by tool-augmented LLM, with a traditional Graphical Manipulation Interface, streamlining the entire design process from raw resource curation to composition and refinement. Extensive evaluations highlight our tool's proficiency in simplifying the design process, opening avenues for its use by non-professional users. Moreover, we spotlight the potential of LLMs in reshaping the domain of information graphics design, offering a blend of automation, versatility, and user-centric interactivity.

  • 6 authors
·
Jan 24, 2024

InfoMosaic-Bench: Evaluating Multi-Source Information Seeking in Tool-Augmented Agents

Information seeking is a fundamental requirement for humans. However, existing LLM agents rely heavily on open-web search, which exposes two fundamental weaknesses: online content is noisy and unreliable, and many real-world tasks require precise, domain-specific knowledge unavailable from the web. The emergence of the Model Context Protocol (MCP) now allows agents to interface with thousands of specialized tools, seemingly resolving this limitation. Yet it remains unclear whether agents can effectively leverage such tools -- and more importantly, whether they can integrate them with general-purpose search to solve complex tasks. Therefore, we introduce InfoMosaic-Bench, the first benchmark dedicated to multi-source information seeking in tool-augmented agents. Covering six representative domains (medicine, finance, maps, video, web, and multi-domain integration), InfoMosaic-Bench requires agents to combine general-purpose search with domain-specific tools. Tasks are synthesized with InfoMosaic-Flow, a scalable pipeline that grounds task conditions in verified tool outputs, enforces cross-source dependencies, and filters out shortcut cases solvable by trivial lookup. This design guarantees both reliability and non-triviality. Experiments with 14 state-of-the-art LLM agents reveal three findings: (i) web information alone is insufficient, with GPT-5 achieving only 38.2% accuracy and 67.5% pass rate; (ii) domain tools provide selective but inconsistent benefits, improving some domains while degrading others; and (iii) 22.4% of failures arise from incorrect tool usage or selection, highlighting that current LLMs still struggle with even basic tool handling.

  • 13 authors
·
Oct 2, 2025

Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL

Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.

  • 8 authors
·
Aug 11, 2025 3

ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding

Video understanding is fundamental to tasks such as action recognition, video reasoning, and robotic control. Early video understanding methods based on large vision-language models (LVLMs) typically adopt a single-pass reasoning paradigm without dynamic feedback, limiting the model's capacity to self-correct and adapt in complex scenarios. Recent efforts have attempted to address this limitation by incorporating reward models and reinforcement learning to enhance reasoning, or by employing tool-agent frameworks. However, these approaches face several challenges, including high annotation costs, reward signals that fail to capture real-time reasoning states, and low inference efficiency. To overcome these issues, we propose ReAgent-V, a novel agentic video understanding framework that integrates efficient frame selection with real-time reward generation during inference. These reward signals not only guide iterative answer refinement through a multi-perspective reflection mechanism-adjusting predictions from conservative, neutral, and aggressive viewpoints-but also enable automatic filtering of high-quality data for supervised fine-tuning (SFT), direct preference optimization (DPO), and group relative policy optimization (GRPO). ReAgent-V is lightweight, modular, and extensible, supporting flexible tool integration tailored to diverse tasks. Extensive experiments on 12 datasets across three core applications-video understanding, video reasoning enhancement, and vision-language-action model alignment-demonstrate significant gains in generalization and reasoning, with improvements of up to 6.9%, 2.1%, and 9.8%, respectively, highlighting the effectiveness and versatility of the proposed framework.

  • 8 authors
·
Jun 2, 2025

Computer-Use Agents as Judges for Generative User Interface

Computer-Use Agents (CUA) are becoming increasingly capable of autonomously operating digital environments through Graphical User Interfaces (GUI). Yet, most GUI remain designed primarily for humans--prioritizing aesthetics and usability--forcing agents to adopt human-oriented behaviors that are unnecessary for efficient task execution. At the same time, rapid advances in coding-oriented language models (Coder) have transformed automatic GUI design. This raises a fundamental question: Can CUA as judges to assist Coder for automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for Automatic GUI development spanning 52 applications across diverse domains. Using language models, we synthesize 1560 tasks that simulate real-world scenarios. To ensure task reliability, we further develop a verifier that programmatically checks whether each task is executable within its environment. Building on this, we propose a Coder-CUA in Collaboration framework: the Coder acts as Designer, generating and revising websites, while the CUA serves as Judge, evaluating functionality and refining designs. Success is measured not by visual appearance, but by task solvability and CUA navigation success rate. To turn CUA feedback into usable guidance, we design a CUA Dashboard that compresses multi-step navigation histories into concise visual summaries, offering interpretable guidance for iterative redesign. By positioning agents as both designers and judges, our framework shifts interface design toward agent-native efficiency and reliability. Our work takes a step toward shifting agents from passive use toward active participation in digital environments. Our code and dataset are available at https://github.com/showlab/AUI.

showlab Show Lab
·
Nov 19, 2025 2

Recon-Act: A Self-Evolving Multi-Agent Browser-Use System via Web Reconnaissance, Tool Generation, and Task Execution

Recent years, multimodal models have made remarkable strides and pave the way for intelligent browser use agents. However, when solving tasks on real world webpages in multi-turn, long-horizon trajectories, current agents still suffer from disordered action sequencing and excessive trial and error during execution. This paper introduces Recon-Act, a self-evolving multi-agent framework grounded in Reconnaissance-Action behavioral paradigm. The system comprises a Reconnaissance Team and an Action Team: the former conducts comparative analysis and tool generation, while the latter handles intent decomposition, tool orchestration, and execution. By contrasting the erroneous trajectories with successful ones, the Reconnaissance Team infers remedies, and abstracts them into a unified notion of generalized tools, either expressed as hints or as rule-based codes, and register to the tool archive in real time. The Action Team reinference the process empowered with these targeting tools, thus establishing a closed-loop training pipeline of data-tools-action-feedback. Following the 6 level implementation roadmap proposed in this work, we have currently reached Level 3 (with limited human-in-the-loop intervention). Leveraging generalized tools obtained through reconnaissance, Recon-Act substantially improves adaptability to unseen websites and solvability on long-horizon tasks, and achieves state-of-the-art performance on the challenging VisualWebArena dataset.

  • 4 authors
·
Sep 25, 2025 2

Breaking the Data Barrier -- Building GUI Agents Through Task Generalization

Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.

  • 7 authors
·
Apr 14, 2025 2

Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers

Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.

  • 5 authors
·
May 27, 2025 2

PresentAgent: Multimodal Agent for Presentation Video Generation

We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document-presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats. Code will be available at https://github.com/AIGeeksGroup/PresentAgent.

  • 7 authors
·
Jul 5, 2025 1

FaSTA^*: Fast-Slow Toolpath Agent with Subroutine Mining for Efficient Multi-turn Image Editing

We develop a cost-efficient neurosymbolic agent to address challenging multi-turn image editing tasks such as "Detect the bench in the image while recoloring it to pink. Also, remove the cat for a clearer view and recolor the wall to yellow.'' It combines the fast, high-level subtask planning by large language models (LLMs) with the slow, accurate, tool-use, and local A^* search per subtask to find a cost-efficient toolpath -- a sequence of calls to AI tools. To save the cost of A^* on similar subtasks, we perform inductive reasoning on previously successful toolpaths via LLMs to continuously extract/refine frequently used subroutines and reuse them as new tools for future tasks in an adaptive fast-slow planning, where the higher-level subroutines are explored first, and only when they fail, the low-level A^* search is activated. The reusable symbolic subroutines considerably save exploration cost on the same types of subtasks applied to similar images, yielding a human-like fast-slow toolpath agent "FaSTA^*'': fast subtask planning followed by rule-based subroutine selection per subtask is attempted by LLMs at first, which is expected to cover most tasks, while slow A^* search is only triggered for novel and challenging subtasks. By comparing with recent image editing approaches, we demonstrate FaSTA^* is significantly more computationally efficient while remaining competitive with the state-of-the-art baseline in terms of success rate.

  • 4 authors
·
Jun 25, 2025 2

ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents

Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While recent large language models (LLMs) have demonstrated progress in text-to-code generation, many existing approaches rely solely on natural language prompts, limiting their effectiveness in capturing spatial layout and visual design intent. In contrast, UI development in practice is inherently multimodal, often starting from visual sketches or mockups. To address this gap, we introduce a modular multi-agent framework that performs UI-to-code generation in three interpretable stages: grounding, planning, and generation. The grounding agent uses a vision-language model to detect and label UI components, the planning agent constructs a hierarchical layout using front-end engineering priors, and the generation agent produces HTML/CSS code via adaptive prompt-based synthesis. This design improves robustness, interpretability, and fidelity over end-to-end black-box methods. Furthermore, we extend the framework into a scalable data engine that automatically produces large-scale image-code pairs. Using these synthetic examples, we fine-tune and reinforce an open-source VLM, yielding notable gains in UI understanding and code quality. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.

  • 7 authors
·
Jul 30, 2025 4

OmniParser for Pure Vision Based GUI Agent

The recent success of large vision language models shows great potential in driving the agent system operating on user interfaces. However, we argue that the power multimodal models like GPT-4V as a general agent on multiple operating systems across different applications is largely underestimated due to the lack of a robust screen parsing technique capable of: 1) reliably identifying interactable icons within the user interface, and 2) understanding the semantics of various elements in a screenshot and accurately associate the intended action with the corresponding region on the screen. To fill these gaps, we introduce OmniParser, a comprehensive method for parsing user interface screenshots into structured elements, which significantly enhances the ability of GPT-4V to generate actions that can be accurately grounded in the corresponding regions of the interface. We first curated an interactable icon detection dataset using popular webpages and an icon description dataset. These datasets were utilized to fine-tune specialized models: a detection model to parse interactable regions on the screen and a caption model to extract the functional semantics of the detected elements. OmniParser significantly improves GPT-4V's performance on ScreenSpot benchmark. And on Mind2Web and AITW benchmark, OmniParser with screenshot only input outperforms the GPT-4V baselines requiring additional information outside of screenshot.

  • 4 authors
·
Jul 31, 2024 7

SenseNova-MARS: Empowering Multimodal Agentic Reasoning and Search via Reinforcement Learning

While Vision-Language Models (VLMs) can solve complex tasks through agentic reasoning, their capabilities remain largely constrained to text-oriented chain-of-thought or isolated tool invocation. They fail to exhibit the human-like proficiency required to seamlessly interleave dynamic tool manipulation with continuous reasoning, particularly in knowledge-intensive and visually complex scenarios that demand coordinated external tools such as search and image cropping. In this work, we introduce SenseNova-MARS, a novel Multimodal Agentic Reasoning and Search framework that empowers VLMs with interleaved visual reasoning and tool-use capabilities via reinforcement learning (RL). Specifically, SenseNova-MARS dynamically integrates the image search, text search, and image crop tools to tackle fine-grained and knowledge-intensive visual understanding challenges. In the RL stage, we propose the Batch-Normalized Group Sequence Policy Optimization (BN-GSPO) algorithm to improve the training stability and advance the model's ability to invoke tools and reason effectively. To comprehensively evaluate the agentic VLMs on complex visual tasks, we introduce the HR-MMSearch benchmark, the first search-oriented benchmark composed of high-resolution images with knowledge-intensive and search-driven questions. Experiments demonstrate that SenseNova-MARS achieves state-of-the-art performance on open-source search and fine-grained image understanding benchmarks. Specifically, on search-oriented benchmarks, SenseNova-MARS-8B scores 67.84 on MMSearch and 41.64 on HR-MMSearch, surpassing proprietary models such as Gemini-3-Flash and GPT-5. SenseNova-MARS represents a promising step toward agentic VLMs by providing effective and robust tool-use capabilities. To facilitate further research in this field, we will release all code, models, and datasets.

sensenova SenseNova
·
Dec 30, 2025 3

Graph2Eval: Automatic Multimodal Task Generation for Agents via Knowledge Graphs

As multimodal LLM-driven agents continue to advance in autonomy and generalization, evaluation based on static datasets can no longer adequately assess their true capabilities in dynamic environments and diverse tasks. Existing LLM-based synthetic data methods are largely designed for LLM training and evaluation, and thus cannot be directly applied to agent tasks that require tool use and interactive capabilities. While recent studies have explored automatic agent task generation with LLMs, most efforts remain limited to text or image analysis, without systematically modeling multi-step interactions in web environments. To address these challenges, we propose Graph2Eval, a knowledge graph-based framework that automatically generates both multimodal document comprehension tasks and web interaction tasks, enabling comprehensive evaluation of agents' reasoning, collaboration, and interactive capabilities. In our approach, knowledge graphs constructed from multi-source external data serve as the task space, where we translate semantic relations into structured multimodal tasks using subgraph sampling, task templates, and meta-paths. A multi-stage filtering pipeline based on node reachability, LLM scoring, and similarity analysis is applied to guarantee the quality and executability of the generated tasks. Furthermore, Graph2Eval supports end-to-end evaluation of multiple agent types (Single-Agent, Multi-Agent, Web Agent) and measures reasoning, collaboration, and interaction capabilities. We instantiate the framework with Graph2Eval-Bench, a curated dataset of 1,319 tasks spanning document comprehension and web interaction scenarios. Experiments show that Graph2Eval efficiently generates tasks that differentiate agent and model performance, revealing gaps in reasoning, collaboration, and web interaction across different settings and offering a new perspective for agent evaluation.

  • 11 authors
·
Oct 1, 2025 2

VideoAgent2: Enhancing the LLM-Based Agent System for Long-Form Video Understanding by Uncertainty-Aware CoT

Long video understanding has emerged as an increasingly important yet challenging task in computer vision. Agent-based approaches are gaining popularity for processing long videos, as they can handle extended sequences and integrate various tools to capture fine-grained information. However, existing methods still face several challenges: (1) they often rely solely on the reasoning ability of large language models (LLMs) without dedicated mechanisms to enhance reasoning in long video scenarios; and (2) they remain vulnerable to errors or noise from external tools. To address these issues, we propose a specialized chain-of-thought (CoT) process tailored for long video analysis. Our proposed CoT with plan-adjust mode enables the LLM to incrementally plan and adapt its information-gathering strategy. We further incorporate heuristic uncertainty estimation of both the LLM and external tools to guide the CoT process. This allows the LLM to assess the reliability of newly collected information, refine its collection strategy, and make more robust decisions when synthesizing final answers. Empirical experiments show that our uncertainty-aware CoT effectively mitigates noise from external tools, leading to more reliable outputs. We implement our approach in a system called VideoAgent2, which also includes additional modules such as general context acquisition and specialized tool design. Evaluation on three dedicated long video benchmarks (and their subsets) demonstrates that VideoAgent2 outperforms the previous state-of-the-art agent-based method, VideoAgent, by an average of 13.1% and achieves leading performance among all zero-shot approaches

  • 7 authors
·
Apr 6, 2025

Large Language Model-Brained GUI Agents: A Survey

GUIs have long been central to human-computer interaction, providing an intuitive and visually-driven way to access and interact with digital systems. The advent of LLMs, particularly multimodal models, has ushered in a new era of GUI automation. They have demonstrated exceptional capabilities in natural language understanding, code generation, and visual processing. This has paved the way for a new generation of LLM-brained GUI agents capable of interpreting complex GUI elements and autonomously executing actions based on natural language instructions. These agents represent a paradigm shift, enabling users to perform intricate, multi-step tasks through simple conversational commands. Their applications span across web navigation, mobile app interactions, and desktop automation, offering a transformative user experience that revolutionizes how individuals interact with software. This emerging field is rapidly advancing, with significant progress in both research and industry. To provide a structured understanding of this trend, this paper presents a comprehensive survey of LLM-brained GUI agents, exploring their historical evolution, core components, and advanced techniques. We address research questions such as existing GUI agent frameworks, the collection and utilization of data for training specialized GUI agents, the development of large action models tailored for GUI tasks, and the evaluation metrics and benchmarks necessary to assess their effectiveness. Additionally, we examine emerging applications powered by these agents. Through a detailed analysis, this survey identifies key research gaps and outlines a roadmap for future advancements in the field. By consolidating foundational knowledge and state-of-the-art developments, this work aims to guide both researchers and practitioners in overcoming challenges and unlocking the full potential of LLM-brained GUI agents.

  • 12 authors
·
Nov 27, 2024 3

MDocAgent: A Multi-Modal Multi-Agent Framework for Document Understanding

Document Question Answering (DocQA) is a very common task. Existing methods using Large Language Models (LLMs) or Large Vision Language Models (LVLMs) and Retrieval Augmented Generation (RAG) often prioritize information from a single modal, failing to effectively integrate textual and visual cues. These approaches struggle with complex multi-modal reasoning, limiting their performance on real-world documents. We present MDocAgent (A Multi-Modal Multi-Agent Framework for Document Understanding), a novel RAG and multi-agent framework that leverages both text and image. Our system employs five specialized agents: a general agent, a critical agent, a text agent, an image agent and a summarizing agent. These agents engage in multi-modal context retrieval, combining their individual insights to achieve a more comprehensive understanding of the document's content. This collaborative approach enables the system to synthesize information from both textual and visual components, leading to improved accuracy in question answering. Preliminary experiments on five benchmarks like MMLongBench, LongDocURL demonstrate the effectiveness of our MDocAgent, achieve an average improvement of 12.1% compared to current state-of-the-art method. This work contributes to the development of more robust and comprehensive DocQA systems capable of handling the complexities of real-world documents containing rich textual and visual information. Our data and code are available at https://github.com/aiming-lab/MDocAgent.

  • 7 authors
·
Mar 18, 2025 2