File size: 27,022 Bytes
c69c4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 |
from collections import OrderedDict
from dataclasses import asdict
from functools import partial
from logging import getLogger
from typing import Callable, Optional, Literal
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from timm.layers import DropPath
from torch.nn import functional as F
from torch.nn.init import constant_, xavier_uniform_
from torch.nn.parameter import Parameter
from torch.utils.checkpoint import checkpoint
import types
from core.vision_encoder.rope import Rope2D
from core.vision_encoder.config import PEConfig, PETextConfig, PE_VISION_CONFIG, PE_TEXT_CONFIG, fetch_pe_checkpoint
logger = getLogger()
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.dim = dim
self.init_values = init_values
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
def init_tensors(self):
self.gamma = nn.Parameter(self.init_values * torch.ones(self.dim))
class AttentionPooling(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
num_probe: int = 1,
mlp_ratio: int = 4,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.probe = nn.Parameter(torch.randn(1, num_probe, self.embed_dim))
self.attn = nn.MultiheadAttention(self.embed_dim, self.num_heads, batch_first=True)
self.layernorm = norm_layer(embed_dim)
self.mlp_width = int(embed_dim * mlp_ratio)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(self.embed_dim, self.mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(self.mlp_width, self.embed_dim)),
]
)
)
self._is_converted = False
def forward(self, x: torch.Tensor):
# This is the original forward method that will be replaced.
batch, _, _ = x.shape
q = self.probe.repeat((batch, 1, 1)).to(x.dtype)
x_attn = self.attn(q, x, x, need_weights=False)[0]
x = x_attn + self.mlp(self.layernorm(x_attn))
return x
class SelfAttention(nn.Module):
r"""
Implements sequence packed attention and RoPe
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
rope: Optional[nn.Module] = None,
):
super(SelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
# To make this compatibile with nn.MultiHeadAttention
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.rope = rope
self.scale = self.head_dim ** (-0.5)
def init_tensors(self):
xavier_uniform_(self.in_proj_weight)
constant_(self.in_proj_bias, 0.0)
constant_(self.out_proj.bias, 0.0)
def del_muda(self):
del self.in_proj_weight
del self.in_proj_bias
def migrate_weights(self):
"""
MUST be called *after* loading the state_dict.
This copies the weights from the old Parameters to the new nn.Linear layer.
"""
# Use torch.no_grad() to ensure this is done without tracking gradients
with torch.no_grad():
self.in_proj.weight.copy_(self.in_proj_weight)
self.in_proj.bias.copy_(self.in_proj_bias)
# del self.in_proj_weight
# del self.in_proj_bias
# print("Migration complete. Old parameters have been removed.")
def forward(self, x, attn_mask=None, need_weights=False):
batch, seq, embed_dim = x.shape
#proj = F.linear(x, self.in_proj_weight, self.in_proj_bias)
proj = self.in_proj(x)
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
proj = (
proj.unflatten(-1, (3, embed_dim))
.unsqueeze(0)
.transpose(0, -2)
.squeeze(-2)
.contiguous()
)
q, k, v = proj[0], proj[1], proj[2]
# Use "q_" so that we don't accidentally quit in pdb :)
q = rearrange(q, "b s (h d) -> b h s d", h=self.num_heads)
k = rearrange(k, "b s (h d) -> b h s d", h=self.num_heads)
v = rearrange(v, "b s (h d) -> b h s d", h=self.num_heads)
if self.rope:
q, k = self.rope(q, k)
if not need_weights:
# Original efficient path
attn = F.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale
)
attn = rearrange(attn, "b h s d -> b s (h d)")
return self.out_proj(attn)
else:
# Path to get attention weights
q_scaled = q * self.scale
# attn_weights shape: (batch, num_heads, seq_len, seq_len)
attn_weights = torch.matmul(q_scaled, k.transpose(-2, -1))
if attn_mask is not None:
attn_weights += attn_mask
attn_weights = F.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, v)
attn_output = rearrange(attn_output, "b h s d -> b s (h d)")
output = self.out_proj(attn_output)
return output, attn_weights
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
drop_path: float = 0.0,
rope: Optional[nn.Module] = None,
):
super().__init__()
if rope:
self.attn = SelfAttention(d_model, n_head, rope=rope)
else:
self.attn = nn.MultiheadAttention(d_model, n_head, batch_first=True)
self.ls_1 = (
LayerScale(d_model, ls_init_value)
if ls_init_value is not None
else nn.Identity()
)
self.ls_2 = (
LayerScale(d_model, ls_init_value)
if ls_init_value is not None
else nn.Identity()
)
self.ln_1 = norm_layer(d_model)
self.ln_2 = norm_layer(d_model)
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model)),
]
)
)
def _call_attn(
self,
q_x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
need_weights: bool = False,
):
if attn_mask is not None:
if not attn_mask.dtype == torch.bool:
attn_mask = attn_mask.to(q_x.dtype)
if isinstance(self.attn, SelfAttention):
# Pass the flag to your custom SelfAttention
return self.attn(q_x, attn_mask=attn_mask, need_weights=need_weights)
else:
# Standard nn.MultiheadAttention
return self.attn(q_x, q_x, q_x, attn_mask=attn_mask, need_weights=need_weights)[0]
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
need_weights: bool = False,
):
attn_result = self._call_attn(self.ln_1(x), attn_mask=attn_mask, need_weights=need_weights)
attn_weights = None
if need_weights:
# Unpack the output and the weights
attn_output, attn_weights = attn_result
else:
attn_output = attn_result
x = x + self.drop_path1(self.ls_1(attn_output))
x = x + self.drop_path2(self.ls_2(self.mlp(self.ln_2(x))))
if need_weights:
return x, attn_weights # Return weights
return x
def del_muda(self):
self.attn.del_muda()
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
drop_path: float = 0.0,
rope: Optional[nn.Module] = None,
):
super().__init__()
self.width = width
self.layers = layers
self.grad_checkpointing = False
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
width,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
drop_path=drop_path,
rope=rope,
)
for _ in range(layers)
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def truncate(self, layer_idx: int):
""" Delete layers so the last layer is the given layer index. """
self.layers = ((self.layers + layer_idx) % self.layers) + 1
self.resblocks = nn.ModuleList(self.resblocks[:self.layers])
def del_muda(self):
for resblock in self.resblocks:
resblock.del_muda()
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
layer_idx: int = -1,
need_weights: bool = False, # Add need_weights flag
):
stop_idx = (self.layers + layer_idx) % self.layers
attention_maps = [] # List to store maps from each layer
for i, r in enumerate(self.resblocks):
if self.grad_checkpointing and not torch.jit.is_scripting():
if need_weights:
raise ValueError("Cannot get attention maps with gradient checkpointing enabled.")
x = checkpoint(r, x, attn_mask, use_reentrant=False)
else:
if need_weights:
x, attn_map = r(x, attn_mask=attn_mask, need_weights=True)
attention_maps.append(attn_map)
else:
x = r(x, attn_mask=attn_mask, need_weights=False)
if i == stop_idx:
break
if need_weights:
return x, attention_maps # Return the list of maps
return x
class VisionTransformer(nn.Module):
def __init__(
self,
patch_size: int,
width: int,
layers: int,
heads: int,
mlp_ratio: float,
act_layer: Callable = nn.GELU,
norm_layer: Callable = partial(nn.LayerNorm, eps=1e-5),
use_ln_pre: bool = True,
use_ln_post: bool = True,
ls_init_value: float = None,
drop_path: float = 0.0,
image_size: int = 448, # Pretrain image size only; you can pass in any image size
use_abs_posemb: bool = True,
use_rope2d: bool = True,
use_cls_token: bool = False,
output_dim: Optional[int] = 1280,
attn_pooler_heads: int = 8,
pool_type: Literal["attn", "tok", "avg", "none"] = "attn",
):
super().__init__()
assert pool_type in ("attn", "tok", "avg", "none")
self.pool_type = pool_type
self.patch_size = patch_size
self.output_dim = output_dim or width
self.proj_dim = output_dim
self.heads = heads
self.width = width
self.layers = layers
self.use_abs_posemb = use_abs_posemb
self.use_cls_token = use_cls_token
self.use_rope2d = use_rope2d
self.image_size = image_size
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
self.rope = (
Rope2D(
dim=width // heads,
use_cls_token=self.use_cls_token,
)
if self.use_rope2d
else None
)
self.ln_pre = norm_layer(width) if use_ln_pre else nn.Identity()
self.ln_post = norm_layer(self.width) if use_ln_post else nn.Identity()
self.transformer = Transformer(
width,
layers,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
drop_path=drop_path,
rope=self.rope,
)
if pool_type == "attn":
self.attn_pool = AttentionPooling(
embed_dim=width,
num_heads=attn_pooler_heads,
act_layer=act_layer,
norm_layer=norm_layer,
)
else:
self.attn_pool = None
self.init_tensors()
def del_muda(self):
self.transformer.del_muda()
def delete_attn_pool(self):
del self.attn_pool
def init_tensors(self):
def init_submodule_tensors(module):
for name, child in module.named_children():
if hasattr(child, "init_tensors"):
logger.debug(f"Initializing tensors for submodule: {name}")
child.init_tensors()
init_submodule_tensors(child)
init_submodule_tensors(self)
self.rope.init_tensors()
# class embeddings and positional embeddings
init_scale = self.width**-0.5
if self.use_cls_token:
self.class_embedding = nn.Parameter(init_scale * torch.randn(self.width))
if self.use_abs_posemb:
self.posemb_grid_size = self.image_size // self.patch_size
self.positional_embedding = nn.Parameter(
init_scale
* torch.randn(
int(self.use_cls_token) + self.posemb_grid_size**2, self.width
)
)
if self.proj_dim is not None:
self.proj = nn.Parameter(
init_scale * torch.randn(self.width, self.proj_dim)
)
def load_ckpt(self, ckpt_path: str, verbose: bool = True):
_sd = torch.load(ckpt_path, weights_only=True)
if "state_dict" in _sd:
_sd = _sd["state_dict"]
elif "weights" in _sd:
_sd = _sd["weights"]
# for backwards compatibility
_sd = {k.replace("module.", ""): v for k, v in _sd.items()}
if any(k.startswith("visual.") for k in _sd):
_sd = {k.replace("visual.", ""): v for k, v in _sd.items() if "visual" in k}
m, u = self.load_state_dict(_sd, strict=False)
if verbose or (m or u):
logger.info(f"Missing keys for loading vision encoder: {m}")
logger.info(f"Unexpected keys for loading vision encoder: {u}")
print(f"Missing keys for loading vision encoder: {m}")
print(f"Unexpected keys for loading vision encoder: {u}")
def truncate(self, layer_idx: int):
""" Delete layers so the last layer is the given layer index. """
self.transformer.truncate(layer_idx)
self.layers = self.transformer.layers
@classmethod
def from_config(
cls,
name: str,
pretrained: bool = False,
checkpoint_path: Optional[str] = None,
**kwdargs
):
if name not in PE_VISION_CONFIG:
raise RuntimeError(f"{name} not found in configs.")
args = asdict(PE_VISION_CONFIG[name])
args.update(kwdargs)
model = cls(**args)
if pretrained:
model.load_ckpt(fetch_pe_checkpoint(name, checkpoint_path))
return model
@classmethod
def available_configs(cls):
return list(PE_VISION_CONFIG.keys())
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.set_grad_checkpointing(enable=enable)
def _sample_abs_posemb(self, grid_h: int, grid_w: int):
"""Interpolates the absolute position embedding if necessary."""
if self.posemb_grid_size == grid_h and self.posemb_grid_size == grid_w:
return self.positional_embedding[None, ...]
pos_embed = self.positional_embedding
if self.use_cls_token:
cls_token_embed, pos_embed = pos_embed[:1], pos_embed[1:]
pos_embed = (
pos_embed.reshape(1, self.posemb_grid_size, self.posemb_grid_size, -1)
.permute(0, 3, 1, 2)
.contiguous()
)
pos_embed = F.interpolate(
pos_embed, size=(grid_h, grid_w), mode="bilinear", align_corners=False
)
pos_embed = pos_embed.permute(0, 2, 3, 1).reshape(-1, self.width).contiguous()
if self.use_cls_token:
pos_embed = torch.cat([cls_token_embed, pos_embed], dim=0)
return pos_embed[None, ...]
def _pool(self, x: torch.Tensor):
if self.pool_type == "tok":
return x[:, 0]
elif self.pool_type == "avg":
return x.mean(dim=1)
elif self.pool_type == "attn":
return self.attn_pool(x).squeeze(1)
elif self.pool_type == "none":
return x
else:
raise NotImplementedError
def forward_features(
self,
x: torch.Tensor,
norm: bool = False,
layer_idx: int = -1,
strip_cls_token: bool = False,
need_weights: bool = False, # Add need_weights flag
):
batch, _, h, w = x.shape
grid_h, grid_w = h // self.patch_size, w // self.patch_size
x = self.conv1(x)
x = x.permute(0, 2, 3, 1).reshape(batch, -1, self.width)
if self.use_cls_token:
x = torch.cat(
[self.class_embedding.view(1, 1, -1).expand(batch, -1, -1), x],
dim=1,
)
if self.use_abs_posemb:
x = x + self._sample_abs_posemb(grid_h, grid_w)
if self.use_rope2d:
self.rope.update_grid(x.device, grid_h, grid_w)
x = self.ln_pre(x)
# Get output from the transformer
transformer_output = self.transformer(x, layer_idx=layer_idx, need_weights=need_weights)
attention_maps = None
if need_weights:
x, attention_maps = transformer_output
else:
x = transformer_output
if norm:
x = self.ln_post(x)
if strip_cls_token and self.use_cls_token:
x = x[:, 1:, :]
if need_weights:
return x, attention_maps # Return maps
return x
def forward(self, x: torch.Tensor, **kwargs):
x = self.forward_features(x, norm=True, **kwargs)
x = self._pool(x)
if self.proj_dim is not None:
x = x @ self.proj
return x
class TextTransformer(nn.Module):
def __init__(
self,
context_length: int = 72,
vocab_size: int = 49408,
width: int = 512,
heads: int = 8,
layers: int = 12,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
output_dim: int = 1280,
no_causal_mask: bool = False,
pad_id: int = 0,
pool_type: str = "argmax",
proj_bias: bool = False,
act_layer: Callable = nn.GELU,
norm_layer: Callable = partial(nn.LayerNorm, eps=1e-5),
output_tokens: bool = False,
use_ln_post: bool = True,
):
super().__init__()
assert pool_type in ("first", "last", "argmax", "none")
self.pool_type = pool_type
self.output_tokens = output_tokens
self.num_pos = self.context_length = context_length
self.vocab_size = vocab_size
self.width = width
self.output_dim = output_dim
self.heads = heads
self.pad_id = pad_id
self.layers = layers
self.token_embedding = nn.Embedding(vocab_size, width)
self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width))
self.transformer = Transformer(
width=width,
layers=layers,
heads=heads,
mlp_ratio=mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
)
self.ln_final = norm_layer(width) if use_ln_post else nn.Identity()
if no_causal_mask:
self.attn_mask = None
else:
self.register_buffer(
"attn_mask", self.build_causal_mask(), persistent=False
)
if pool_type == "attn" or pool_type == "attn_eos":
self.attn_pool = AttentionPooling(
embed_dim=width,
num_heads=heads,
act_layer=act_layer,
norm_layer=norm_layer,
)
else: # argmax
self.attn_pool = None
if proj_bias:
self.text_projection = nn.Linear(width, output_dim)
else:
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
def build_causal_mask(self):
# lazily create causal attention mask, with full attention between the tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.num_pos, self.num_pos)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def load_ckpt(self, ckpt_path: str, verbose: bool = True):
_sd = torch.load(ckpt_path, weights_only=True)
if "state_dict" in _sd:
_sd = _sd["state_dict"]
elif "weights" in _sd:
_sd = _sd["weights"]
_sd = {k.replace("module.", ""): v for k, v in _sd.items()}
m, u = self.load_state_dict(_sd, strict=False)
if verbose or (m or u):
logger.info(f"Missing keys for loading model: {m}")
logger.info(f"Unexpected keys for loading model: {u}")
print(f"Missing keys for loading model: {m}")
print(f"Unexpected keys for loading model: {u}")
def build_cls_mask(self, text):
cls_mask = (text != self.pad_id).unsqueeze(1)
cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=True)
additive_mask = torch.empty(cls_mask.shape, device=cls_mask.device)
additive_mask.fill_(0)
additive_mask.masked_fill_(~cls_mask, float("-inf"))
additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0)
return additive_mask
def text_global_pool(
self, x, text: Optional[torch.Tensor] = None, pool_type: str = "argmax"
):
if pool_type == "first":
pooled, tokens = x[:, 0], x[:, 1:]
elif pool_type == "last":
pooled, tokens = x[:, -1], x[:, :-1]
elif pool_type == "argmax":
# take features from the eot embedding (eot_token is the highest number in each sequence)
assert text is not None
pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
else:
pooled = tokens = x
return pooled, tokens
def forward(self, text):
seq_len = text.shape[1]
x = self.token_embedding(
text
)
attn_mask = self.attn_mask
if attn_mask is not None:
attn_mask = attn_mask[:seq_len, :seq_len]
x = x + self.positional_embedding[:seq_len]
x = self.transformer(x, attn_mask=attn_mask)
x = self.ln_final(x)
pooled, tokens = self.text_global_pool(x, text, pool_type=self.pool_type)
if self.text_projection is not None:
if isinstance(self.text_projection, nn.Linear):
pooled = self.text_projection(pooled)
else:
pooled = pooled @ self.text_projection
if self.output_tokens:
return pooled, tokens
return pooled
class CLIP(TextTransformer):
def __init__(
self,
vision_cfg: PEConfig,
text_cfg: PETextConfig,
init_logit_scale: float = np.log(1 / 0.07)
):
super(CLIP, self).__init__(**asdict(text_cfg))
self.visual = VisionTransformer(**asdict(vision_cfg))
self.image_size = self.visual.image_size # For ease of use
self.logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
def encode_image(self, image, normalize: bool = False):
x = self.visual(image)
return F.normalize(x, dim=-1) if normalize else x
def encode_video(self, video, normalize: bool = False): # b n c h w
b, n, c, h, w = video.shape
frms = video.reshape(b * n, c, h, w)
frm_feats = self.encode_image(frms, normalize=normalize)
video_feats = frm_feats.reshape(b, n, -1)
video_feats = video_feats.mean(dim=1)
return video_feats
def encode_text(self, text, normalize: bool = False):
x = super().forward(text)
return F.normalize(x, dim=-1) if normalize else x
def forward(
self,
image: Optional[torch.Tensor] = None,
text: Optional[torch.Tensor] = None,
):
image_features = (
self.encode_image(image, normalize=True) if image is not None else None
)
text_features = (
self.encode_text(text, normalize=True) if text is not None else None
)
return image_features, text_features, self.logit_scale.exp()
@classmethod
def from_config(
cls,
name: str,
pretrained: bool = False,
checkpoint_path: Optional[str] = None # To load your own
):
if name not in PE_VISION_CONFIG or name not in PE_TEXT_CONFIG:
raise RuntimeError(f"{name} not found in configs.")
model = cls(PE_VISION_CONFIG[name], PE_TEXT_CONFIG[name])
if pretrained:
model.load_ckpt(fetch_pe_checkpoint(name, checkpoint_path))
return model
@classmethod
def available_configs(cls):
return [k for k in PE_VISION_CONFIG if k in PE_TEXT_CONFIG] |