File size: 11,046 Bytes
ca7a2c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# Trip Planner Feature - Technical Design Document
**Version**: 1.0
**Date**: 2025-12-15
**Status**: Draft
---
## 📋 Overview
Tính năng Trip Planner cho phép user lên kế hoạch chuyến đi bằng cách:
1. Chat với AI để tìm địa điểm
2. Thêm địa điểm vào Plan Box
3. Tối ưu lộ trình bằng thuật toán TSP
4. Chỉnh sửa/thay thế địa điểm
---
## 🎯 User Flow
```mermaid
flowchart TD
A[User Chat] --> B{AI Response}
B --> C[Place Cards với 'Add to Plan']
C --> |Click Add| D[Plan Box]
D --> E{User Actions}
E --> |Optimize| F[TSP Algorithm]
E --> |Drag & Drop| G[Reorder Places]
E --> |Replace| H[AI hỏi criteria mới]
H --> I[Suggest Alternatives]
I --> D
F --> D
```
---
## 🏗️ Architecture
### Backend Components
```
app/
├── planner/
│ ├── __init__.py
│ ├── models.py # Plan, PlanItem schemas
│ ├── router.py # API endpoints
│ ├── service.py # Business logic
│ └── tsp.py # TSP optimization algorithm
└── mcp/tools/
└── graph_tool.py # Neo4j + OSM (có sẵn)
```
### API Endpoints
| Method | Endpoint | Description |
|--------|----------|-------------|
| POST | `/planner/create` | Tạo plan mới |
| GET | `/planner/{plan_id}` | Lấy plan |
| POST | `/planner/{plan_id}/add` | Thêm place vào plan |
| DELETE | `/planner/{plan_id}/remove/{item_id}` | Xóa place |
| PUT | `/planner/{plan_id}/reorder` | Sắp xếp lại thứ tự |
| POST | `/planner/{plan_id}/optimize` | Chạy TSP |
| POST | `/planner/{plan_id}/replace/{item_id}` | Thay thế place |
---
## 📦 Data Models
### Plan
```python
@dataclass
class Plan:
plan_id: str
user_id: str
name: str
items: list[PlanItem]
created_at: datetime
updated_at: datetime
total_distance_km: float | None
estimated_duration_min: int | None
```
### PlanItem
```python
@dataclass
class PlanItem:
item_id: str
place_id: str
name: str
category: str
lat: float
lng: float
order: int # Thứ tự trong plan
added_at: datetime
notes: str | None
```
---
## 🧮 TSP Algorithm
### Approach: Nearest Neighbor + 2-opt Optimization
```python
# app/planner/tsp.py
from math import radians, sin, cos, sqrt, atan2
def haversine(lat1, lng1, lat2, lng2) -> float:
"""Calculate distance between 2 points in km."""
R = 6371 # Earth's radius in km
dlat = radians(lat2 - lat1)
dlng = radians(lng2 - lng1)
a = sin(dlat/2)**2 + cos(radians(lat1)) * cos(radians(lat2)) * sin(dlng/2)**2
return 2 * R * atan2(sqrt(a), sqrt(1-a))
def calculate_distance_matrix(places: list[dict]) -> list[list[float]]:
"""Build NxN distance matrix."""
n = len(places)
matrix = [[0.0] * n for _ in range(n)]
for i in range(n):
for j in range(n):
if i != j:
matrix[i][j] = haversine(
places[i]['lat'], places[i]['lng'],
places[j]['lat'], places[j]['lng']
)
return matrix
def nearest_neighbor(matrix: list[list[float]], start: int = 0) -> list[int]:
"""Greedy nearest neighbor heuristic."""
n = len(matrix)
visited = [False] * n
tour = [start]
visited[start] = True
for _ in range(n - 1):
current = tour[-1]
nearest = -1
min_dist = float('inf')
for j in range(n):
if not visited[j] and matrix[current][j] < min_dist:
min_dist = matrix[current][j]
nearest = j
tour.append(nearest)
visited[nearest] = True
return tour
def two_opt(tour: list[int], matrix: list[list[float]]) -> list[int]:
"""2-opt local search improvement."""
improved = True
while improved:
improved = False
for i in range(1, len(tour) - 1):
for j in range(i + 1, len(tour)):
# Calculate improvement
d1 = matrix[tour[i-1]][tour[i]] + matrix[tour[j-1]][tour[j]]
d2 = matrix[tour[i-1]][tour[j-1]] + matrix[tour[i]][tour[j]]
if d2 < d1:
# Reverse segment
tour[i:j] = tour[i:j][::-1]
improved = True
return tour
def optimize_route(places: list[dict], start_index: int = 0) -> tuple[list[int], float]:
"""
Main TSP optimization function.
Args:
places: List of places with 'lat', 'lng' keys
start_index: Index of starting place
Returns:
(optimized_order, total_distance_km)
"""
if len(places) <= 2:
return list(range(len(places))), 0.0
matrix = calculate_distance_matrix(places)
tour = nearest_neighbor(matrix, start_index)
tour = two_opt(tour, matrix)
# Calculate total distance
total = sum(matrix[tour[i]][tour[i+1]] for i in range(len(tour)-1))
return tour, total
```
### Complexity
- **Nearest Neighbor**: O(n²)
- **2-opt**: O(n²) per iteration, ~O(n³) worst case
- **Suitable for**: Up to ~50 places (typical trip size)
---
## 🔄 Replace Flow
### Workflow
```mermaid
sequenceDiagram
participant U as User
participant F as Frontend
participant B as Backend
participant AI as LLM Agent
U->>F: Click Replace on Place X
F->>B: POST /chat {"message": "replace_context", "place_id": X}
B->>AI: "User muốn thay thế [Place X]. Hỏi họ muốn tìm địa điểm như nào?"
AI->>B: "Bạn muốn tìm địa điểm thay thế như thế nào? (VD: gần hơn, rẻ hơn, khác loại...)"
B->>F: Response
F->>U: Display AI question
U->>F: "Tìm quán cafe yên tĩnh hơn"
F->>B: POST /chat with context
B->>AI: Search for alternatives
AI->>B: Return alternatives as Place Cards
B->>F: Place Cards
U->>F: Select replacement
F->>B: PUT /planner/{plan_id}/replace/{item_id}
B->>F: Updated Plan
```
### API Request
```json
// POST /planner/{plan_id}/replace/{item_id}
{
"new_place_id": "cafe_xyz_123",
"new_place": {
"name": "Cafe XYZ",
"lat": 16.0544,
"lng": 108.2480,
"category": "Coffee shop"
}
}
```
---
## 🎨 Frontend Integration
### Chat Response Format
```json
{
"response": "Đây là một số quán cafe gần Cầu Rồng:",
"places": [
{
"place_id": "sound_cafe",
"name": "Sound Cafe",
"category": "Coffee shop",
"lat": 16.0611,
"lng": 108.2272,
"rating": 4.7,
"description": "Quán cafe âm nhạc acoustic...",
"distance_km": 1.75,
"actions": ["add_to_plan", "view_details"]
}
],
"plan_context": {
"plan_id": "plan_abc123",
"item_count": 3
}
}
```
### Plan Box State
```typescript
interface PlanState {
planId: string;
items: PlanItem[];
isOptimized: boolean;
totalDistanceKm: number;
estimatedDurationMin: number;
}
interface PlanItem {
itemId: string;
placeId: string;
name: string;
category: string;
lat: number;
lng: number;
order: number;
}
```
---
## 📐 Implementation Plan
### Phase 1: Core API (Week 1)
- [ ] Create `app/planner/` module
- [ ] Implement `models.py` with Pydantic schemas
- [ ] Implement `tsp.py` with optimization algorithm
- [ ] Create `router.py` with basic CRUD endpoints
- [ ] Add session-based plan storage
### Phase 2: Chat Integration (Week 2)
- [ ] Modify chat response format to include `places` array
- [ ] Add `add_to_plan` action handling in agent
- [ ] Implement replace flow with context tracking
- [ ] Store plan context per user session
### Phase 3: TSP & Optimization (Week 3)
- [ ] Implement `/optimize` endpoint
- [ ] Add distance matrix calculation using graph_tool
- [ ] Integrate with Neo4j for real distances (optional: OSRM for road distances)
- [ ] Return optimized order with total distance
### Phase 4: Frontend (Week 4)
- [ ] Create Place Card component with actions
- [ ] Implement Plan Box with drag-drop (react-beautiful-dnd)
- [ ] Add Optimize button with loading state
- [ ] Implement Replace flow UI
---
## 🔧 Technical Considerations
### Storage Options
| Option | Pros | Cons |
|--------|------|------|
| In-memory (Redis) | Fast, simple | Lost on restart |
| Supabase | Persistent, user-linked | Requires auth |
| Session-based | No auth needed | Client-side storage |
**Recommendation**: Start with session-based (in-memory per user_id), migrate to Supabase later.
### Distance Calculation
| Method | Accuracy | Speed |
|--------|----------|-------|
| Haversine | ~95% | Very fast |
| OSRM API | ~99% (road) | Slower |
| Graph (Neo4j) | ~95% | Fast |
**Recommendation**: Use Haversine for MVP, add OSRM for production.
### Rate Limits
- OpenStreetMap Nominatim: 1 req/sec
- OSRM: Self-hosted or 10 req/min (demo server)
---
## 📝 Example Usage
### 1. User Chat
```
User: "Tìm quán cafe và nhà hàng hải sản gần Mỹ Khê"
```
### 2. AI Response with Place Cards
```
AI: "Đây là một số gợi ý cho bạn:
☕ **Cafe**
- [Nia Coffee] - 4.3★ - 1.2km [Add to Plan]
- [Sound Cafe] - 4.7★ - 1.8km [Add to Plan]
🦐 **Hải sản**
- [My Hanh Seafood] - 4.8★ - 0.5km [Add to Plan]
- [Bé Ni 2] - 4.8★ - 0.6km [Add to Plan]
"
```
### 3. Plan Box
```
📍 Your Plan (4 places)
┌──────────────────────────────┐
│ 1. Nia Coffee [✏️] [🔄] │
│ 2. Sound Cafe [✏️] [🔄] │
│ 3. My Hanh Seafood [✏️] [🔄] │
│ 4. Bé Ni 2 [✏️] [🔄] │
└──────────────────────────────┘
Total: 8.2km | ~45min
[🔀 Optimize Route] [📤 Export]
```
### 4. After Optimization
```
📍 Your Plan (Optimized ✓)
┌──────────────────────────────┐
│ 1. My Hanh Seafood (start) │
│ 2. Bé Ni 2 (+0.3km) │
│ 3. Sound Cafe (+1.2km) │
│ 4. Nia Coffee (+0.8km) │
└──────────────────────────────┘
Total: 2.3km | ~15min (Saved 5.9km!)
```
---
## 🔗 Related Files
- [`app/mcp/tools/graph_tool.py`](file:///Volumes/WorkSpace/Project/LocalMate/localmate-danang-backend-v2/app/mcp/tools/graph_tool.py) - Existing geocoding/spatial search
- [`app/shared/chat_history.py`](file:///Volumes/WorkSpace/Project/LocalMate/localmate-danang-backend-v2/app/shared/chat_history.py) - Session management
- [`app/agent/mmca_agent.py`](file:///Volumes/WorkSpace/Project/LocalMate/localmate-danang-backend-v2/app/agent/mmca_agent.py) - Chat agent
---
## ✅ Success Metrics
- User can add 5+ places to plan in < 2 minutes
- TSP optimization runs in < 500ms for 20 places
- Replace flow completes in < 3 exchanges with AI
|