Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| MODEL_ID = "GhostScientist/qwen25-coder-1.5b-codealpaca-sft" | |
| BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-1.5B-Instruct" | |
| # Load tokenizer at startup (CPU) | |
| tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID) | |
| # Global model variable - will be loaded on first GPU call | |
| model = None | |
| def load_model(): | |
| """Load and merge the model with adapter.""" | |
| global model | |
| if model is None: | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| BASE_MODEL_ID, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| ) | |
| model = PeftModel.from_pretrained(base_model, MODEL_ID) | |
| model = model.merge_and_unload() | |
| return model | |
| def generate_response(message, history, system_message, max_tokens, temperature, top_p): | |
| """Generate response using the fine-tuned Qwen coder model.""" | |
| # Load model on GPU | |
| model = load_model() | |
| messages = [{"role": "system", "content": system_message}] | |
| for item in history: | |
| if isinstance(item, (list, tuple)) and len(item) == 2: | |
| user_msg, assistant_msg = item | |
| if user_msg: | |
| messages.append({"role": "user", "content": user_msg}) | |
| if assistant_msg: | |
| messages.append({"role": "assistant", "content": assistant_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| # Apply chat template | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
| # Generate response | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=int(max_tokens), | |
| temperature=float(temperature), | |
| top_p=float(top_p), | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id, | |
| ) | |
| # Decode only the new tokens | |
| response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) | |
| return response | |
| SYSTEM_PROMPT = """You are an expert coding assistant. You help users write, debug, explain, and improve code. | |
| You provide clear, concise, and accurate responses with well-formatted code examples when appropriate. | |
| Always explain your reasoning and suggest best practices.""" | |
| EXAMPLES = [ | |
| ["Write a Python function to check if a number is prime"], | |
| ["Explain the difference between a list and a tuple in Python"], | |
| ["How do I reverse a string in JavaScript?"], | |
| ["Write a SQL query to find duplicate records in a table"], | |
| ["Debug this code: def add(a, b): return a - b"], | |
| ] | |
| demo = gr.ChatInterface( | |
| fn=generate_response, | |
| title="Qwen 2.5 Coder Assistant", | |
| description="""A fine-tuned Qwen 2.5 Coder 1.5B model for code assistance. | |
| Ask me to write code, explain concepts, debug issues, or help with any programming task! | |
| **Model:** [GhostScientist/qwen25-coder-1.5b-codealpaca-sft](https://huggingface.co/GhostScientist/qwen25-coder-1.5b-codealpaca-sft) | |
| """, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value=SYSTEM_PROMPT, | |
| label="System Prompt", | |
| lines=3 | |
| ), | |
| gr.Slider( | |
| minimum=64, | |
| maximum=2048, | |
| value=512, | |
| step=64, | |
| label="Max Tokens" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.5, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p" | |
| ), | |
| ], | |
| examples=EXAMPLES, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |