Spaces:
Sleeping
Sleeping
Update confidence_score.py
Browse files- confidence_score.py +262 -262
confidence_score.py
CHANGED
|
@@ -1,263 +1,263 @@
|
|
| 1 |
-
from typing import Dict, Any, Tuple, List, Optional
|
| 2 |
-
import standardize_location
|
| 3 |
-
|
| 4 |
-
def set_rules() -> Dict[str, Any]:
|
| 5 |
-
"""
|
| 6 |
-
Define weights, penalties and thresholds for the confidence score.
|
| 7 |
-
|
| 8 |
-
V1 principles:
|
| 9 |
-
- Interpretability > mathematical purity
|
| 10 |
-
- Conservative > aggressive
|
| 11 |
-
- Explainable > comprehensive
|
| 12 |
-
"""
|
| 13 |
-
return {
|
| 14 |
-
"direct_evidence": {
|
| 15 |
-
# Based on the table we discussed:
|
| 16 |
-
# Accession explicitly linked to country in paper/supplement
|
| 17 |
-
"explicit_geo_pubmed_text": 40,
|
| 18 |
-
# PubMed ID exists AND geo_loc_name exists
|
| 19 |
-
"geo_and_pubmed": 30,
|
| 20 |
-
# geo_loc_name exists (GenBank only)
|
| 21 |
-
"geo_only": 20,
|
| 22 |
-
# accession appears in external text but no structured geo_loc_name
|
| 23 |
-
"accession_in_text_only": 10,
|
| 24 |
-
},
|
| 25 |
-
"consistency": {
|
| 26 |
-
# Predicted country matches GenBank field
|
| 27 |
-
"match": 20,
|
| 28 |
-
# No contradiction detected across sources (when some evidence exists)
|
| 29 |
-
"no_contradiction": 10,
|
| 30 |
-
# Clear contradiction detected between prediction and GenBank
|
| 31 |
-
"contradiction": -30,
|
| 32 |
-
},
|
| 33 |
-
"evidence_density": {
|
| 34 |
-
# ≥2 linked publications
|
| 35 |
-
"two_or_more_pubs": 20,
|
| 36 |
-
# 1 linked publication
|
| 37 |
-
"one_pub": 10,
|
| 38 |
-
# 0 publications
|
| 39 |
-
"none": 0,
|
| 40 |
-
},
|
| 41 |
-
"risk_penalties": {
|
| 42 |
-
# Missing key metadata fields (geo, host, collection_date, etc.)
|
| 43 |
-
"missing_key_fields": -10,
|
| 44 |
-
# Known failure accession pattern (from your existing bug list)
|
| 45 |
-
"known_failure_pattern": -20,
|
| 46 |
-
},
|
| 47 |
-
"tiers": {
|
| 48 |
-
# Confidence tiers (researchers think in categories, not decimals)
|
| 49 |
-
"high_min": 70,
|
| 50 |
-
"medium_min": 40, # < high_min and >= medium_min = medium; rest = low
|
| 51 |
-
},
|
| 52 |
-
}
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def normalize_country(name: Optional[str]) -> Optional[str]:
|
| 56 |
-
"""
|
| 57 |
-
Normalize country names to improve simple equality checks.
|
| 58 |
-
|
| 59 |
-
This is intentionally simple and rule-based.
|
| 60 |
-
You can extend the mapping as you see real-world variants.
|
| 61 |
-
"""
|
| 62 |
-
if not name:
|
| 63 |
-
return None
|
| 64 |
-
name = name.strip().lower()
|
| 65 |
-
|
| 66 |
-
mapping = {
|
| 67 |
-
"usa": "united states",
|
| 68 |
-
"u.s.a.": "united states",
|
| 69 |
-
"u.s.": "united states",
|
| 70 |
-
"us": "united states",
|
| 71 |
-
"united states of america": "united states",
|
| 72 |
-
"uk": "united kingdom",
|
| 73 |
-
"u.k.": "united kingdom",
|
| 74 |
-
"england": "united kingdom",
|
| 75 |
-
# Add more mappings here when encounter them in real data
|
| 76 |
-
}
|
| 77 |
-
|
| 78 |
-
return mapping.get(name, name)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def compute_confidence_score_and_tier(
|
| 82 |
-
signals: Dict[str, Any],
|
| 83 |
-
rules: Optional[Dict[str, Any]] = None,
|
| 84 |
-
) -> Tuple[int, str, List[str]]:
|
| 85 |
-
"""
|
| 86 |
-
Compute confidence score and tier for a single accession row.
|
| 87 |
-
|
| 88 |
-
Input `signals` dict is expected to contain:
|
| 89 |
-
|
| 90 |
-
has_geo_loc_name: bool
|
| 91 |
-
has_pubmed: bool
|
| 92 |
-
accession_found_in_text: bool # accession present in extracted external text
|
| 93 |
-
predicted_country: str | None # final model label / country prediction
|
| 94 |
-
genbank_country: str | None # from NCBI / GenBank metadata
|
| 95 |
-
num_publications: int
|
| 96 |
-
missing_key_fields: bool
|
| 97 |
-
known_failure_pattern: bool
|
| 98 |
-
|
| 99 |
-
Returns:
|
| 100 |
-
score (0–100), tier ("high"/"medium"/"low"),
|
| 101 |
-
explanations (list of short human-readable reasons)
|
| 102 |
-
"""
|
| 103 |
-
if rules is None:
|
| 104 |
-
rules = set_rules()
|
| 105 |
-
|
| 106 |
-
score = 0
|
| 107 |
-
explanations: List[str] = []
|
| 108 |
-
|
| 109 |
-
# ---------- Signal 1: Direct evidence strength ----------
|
| 110 |
-
has_geo = bool(signals.get("has_geo_loc_name"))
|
| 111 |
-
has_pubmed = bool(signals.get("has_pubmed"))
|
| 112 |
-
accession_in_text = bool(signals.get("accession_found_in_text"))
|
| 113 |
-
|
| 114 |
-
direct_cfg = rules["direct_evidence"]
|
| 115 |
-
|
| 116 |
-
# We pick the strongest applicable case.
|
| 117 |
-
if has_geo and has_pubmed and accession_in_text:
|
| 118 |
-
score += direct_cfg["explicit_geo_pubmed_text"]
|
| 119 |
-
explanations.append(
|
| 120 |
-
"Accession linked to a country in GenBank and associated publication text."
|
| 121 |
-
)
|
| 122 |
-
elif has_geo and has_pubmed:
|
| 123 |
-
score += direct_cfg["geo_and_pubmed"]
|
| 124 |
-
explanations.append(
|
| 125 |
-
"GenBank geo_loc_name and linked publication found."
|
| 126 |
-
)
|
| 127 |
-
elif has_geo:
|
| 128 |
-
score += direct_cfg["geo_only"]
|
| 129 |
-
explanations.append("GenBank geo_loc_name present.")
|
| 130 |
-
elif accession_in_text:
|
| 131 |
-
score += direct_cfg["accession_in_text_only"]
|
| 132 |
-
explanations.append("Accession keyword found in extracted external text.")
|
| 133 |
-
|
| 134 |
-
# ---------- Signal 2: Cross-source consistency ----------
|
| 135 |
-
pred_country = standardize_location.smart_country_lookup(signals.get("predicted_country").lower())
|
| 136 |
-
if pred_country == "not found":
|
| 137 |
-
|
| 138 |
-
gb_country = standardize_location.smart_country_lookup(signals.get("genbank_country").lower())
|
| 139 |
-
|
| 140 |
-
gb_country = normalize_country(signals.get("genbank_country"))
|
| 141 |
-
|
| 142 |
-
cons_cfg = rules["consistency"]
|
| 143 |
-
|
| 144 |
-
if gb_country is not None and pred_country is not None:
|
| 145 |
-
if gb_country == pred_country:
|
| 146 |
-
score += cons_cfg["match"]
|
| 147 |
-
explanations.append(
|
| 148 |
-
"Predicted country matches GenBank country metadata."
|
| 149 |
-
)
|
| 150 |
-
else:
|
| 151 |
-
score += cons_cfg["contradiction"]
|
| 152 |
-
explanations.append(
|
| 153 |
-
"Conflict between predicted country and GenBank country metadata."
|
| 154 |
-
)
|
| 155 |
-
else:
|
| 156 |
-
# Only give "no contradiction" bonus if there is at least some evidence
|
| 157 |
-
if has_geo or has_pubmed or accession_in_text:
|
| 158 |
-
score += cons_cfg["no_contradiction"]
|
| 159 |
-
explanations.append(
|
| 160 |
-
"No contradiction detected across available sources."
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
# ---------- Signal 3: Evidence density ----------
|
| 164 |
-
num_pubs = int(signals.get("num_publications", 0))
|
| 165 |
-
dens_cfg = rules["evidence_density"]
|
| 166 |
-
|
| 167 |
-
if num_pubs >= 2:
|
| 168 |
-
score += dens_cfg["two_or_more_pubs"]
|
| 169 |
-
explanations.append("Multiple linked publications available.")
|
| 170 |
-
elif num_pubs == 1:
|
| 171 |
-
score += dens_cfg["one_pub"]
|
| 172 |
-
explanations.append("One linked publication available.")
|
| 173 |
-
# else: 0 publications → no extra score
|
| 174 |
-
|
| 175 |
-
# ---------- Signal 4: Risk flags ----------
|
| 176 |
-
risk_cfg = rules["risk_penalties"]
|
| 177 |
-
|
| 178 |
-
if signals.get("missing_key_fields"):
|
| 179 |
-
score += risk_cfg["missing_key_fields"]
|
| 180 |
-
explanations.append(
|
| 181 |
-
"Missing key metadata fields (higher uncertainty)."
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
if signals.get("known_failure_pattern"):
|
| 185 |
-
score += risk_cfg["known_failure_pattern"]
|
| 186 |
-
explanations.append(
|
| 187 |
-
"Accession matches a known risky/failure pattern."
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
# ---------- Clamp score and determine tier ----------
|
| 191 |
-
score = max(0, min(100, score))
|
| 192 |
-
|
| 193 |
-
tiers = rules["tiers"]
|
| 194 |
-
if score >= tiers["high_min"]:
|
| 195 |
-
tier = "high"
|
| 196 |
-
elif score >= tiers["medium_min"]:
|
| 197 |
-
tier = "medium"
|
| 198 |
-
else:
|
| 199 |
-
tier = "low"
|
| 200 |
-
|
| 201 |
-
# Keep explanations short and readable
|
| 202 |
-
if len(explanations) > 3:
|
| 203 |
-
explanations = explanations[:3]
|
| 204 |
-
|
| 205 |
-
return score, tier, explanations
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
if __name__ == "__main__":
|
| 209 |
-
# Quick local sanity-check examples (manual smoke tests)
|
| 210 |
-
rules = set_rules()
|
| 211 |
-
|
| 212 |
-
examples = [
|
| 213 |
-
{
|
| 214 |
-
"name": "Strong, clean case",
|
| 215 |
-
"signals": {
|
| 216 |
-
"has_geo_loc_name": True,
|
| 217 |
-
"has_pubmed": True,
|
| 218 |
-
"accession_found_in_text": True,
|
| 219 |
-
"predicted_country": "USA",
|
| 220 |
-
"genbank_country": "United States of America",
|
| 221 |
-
"num_publications": 3,
|
| 222 |
-
"missing_key_fields": False,
|
| 223 |
-
"known_failure_pattern": False,
|
| 224 |
-
},
|
| 225 |
-
},
|
| 226 |
-
{
|
| 227 |
-
"name": "Weak, conflicting case",
|
| 228 |
-
"signals": {
|
| 229 |
-
"has_geo_loc_name": True,
|
| 230 |
-
"has_pubmed": False,
|
| 231 |
-
"accession_found_in_text": False,
|
| 232 |
-
"predicted_country": "Japan",
|
| 233 |
-
"genbank_country": "France",
|
| 234 |
-
"num_publications": 0,
|
| 235 |
-
"missing_key_fields": True,
|
| 236 |
-
"known_failure_pattern": True,
|
| 237 |
-
},
|
| 238 |
-
},
|
| 239 |
-
{
|
| 240 |
-
"name": "Medium, sparse but okay",
|
| 241 |
-
"signals": {
|
| 242 |
-
"has_geo_loc_name": False,
|
| 243 |
-
"has_pubmed": True,
|
| 244 |
-
"accession_found_in_text": False,
|
| 245 |
-
"predicted_country": "United Kingdom",
|
| 246 |
-
"genbank_country": None,
|
| 247 |
-
"num_publications": 1,
|
| 248 |
-
"missing_key_fields": False,
|
| 249 |
-
"known_failure_pattern": False,
|
| 250 |
-
},
|
| 251 |
-
},
|
| 252 |
-
]
|
| 253 |
-
|
| 254 |
-
for ex in examples:
|
| 255 |
-
score, tier, expl = compute_confidence_score_and_tier(
|
| 256 |
-
ex["signals"], rules
|
| 257 |
-
)
|
| 258 |
-
print("====", ex["name"], "====")
|
| 259 |
-
print("Score:", score, "| Tier:", tier)
|
| 260 |
-
print("Reasons:")
|
| 261 |
-
for e in expl:
|
| 262 |
-
print(" -", e)
|
| 263 |
print()
|
|
|
|
| 1 |
+
from typing import Dict, Any, Tuple, List, Optional
|
| 2 |
+
import standardize_location
|
| 3 |
+
|
| 4 |
+
def set_rules() -> Dict[str, Any]:
|
| 5 |
+
"""
|
| 6 |
+
Define weights, penalties and thresholds for the confidence score.
|
| 7 |
+
|
| 8 |
+
V1 principles:
|
| 9 |
+
- Interpretability > mathematical purity
|
| 10 |
+
- Conservative > aggressive
|
| 11 |
+
- Explainable > comprehensive
|
| 12 |
+
"""
|
| 13 |
+
return {
|
| 14 |
+
"direct_evidence": {
|
| 15 |
+
# Based on the table we discussed:
|
| 16 |
+
# Accession explicitly linked to country in paper/supplement
|
| 17 |
+
"explicit_geo_pubmed_text": 40,
|
| 18 |
+
# PubMed ID exists AND geo_loc_name exists
|
| 19 |
+
"geo_and_pubmed": 30,
|
| 20 |
+
# geo_loc_name exists (GenBank only)
|
| 21 |
+
"geo_only": 20,
|
| 22 |
+
# accession appears in external text but no structured geo_loc_name
|
| 23 |
+
"accession_in_text_only": 10,
|
| 24 |
+
},
|
| 25 |
+
"consistency": {
|
| 26 |
+
# Predicted country matches GenBank field
|
| 27 |
+
"match": 20,
|
| 28 |
+
# No contradiction detected across sources (when some evidence exists)
|
| 29 |
+
"no_contradiction": 10,
|
| 30 |
+
# Clear contradiction detected between prediction and GenBank
|
| 31 |
+
"contradiction": -30,
|
| 32 |
+
},
|
| 33 |
+
"evidence_density": {
|
| 34 |
+
# ≥2 linked publications
|
| 35 |
+
"two_or_more_pubs": 20,
|
| 36 |
+
# 1 linked publication
|
| 37 |
+
"one_pub": 10,
|
| 38 |
+
# 0 publications
|
| 39 |
+
"none": 0,
|
| 40 |
+
},
|
| 41 |
+
"risk_penalties": {
|
| 42 |
+
# Missing key metadata fields (geo, host, collection_date, etc.)
|
| 43 |
+
"missing_key_fields": -10,
|
| 44 |
+
# Known failure accession pattern (from your existing bug list)
|
| 45 |
+
"known_failure_pattern": -20,
|
| 46 |
+
},
|
| 47 |
+
"tiers": {
|
| 48 |
+
# Confidence tiers (researchers think in categories, not decimals)
|
| 49 |
+
"high_min": 70,
|
| 50 |
+
"medium_min": 40, # < high_min and >= medium_min = medium; rest = low
|
| 51 |
+
},
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def normalize_country(name: Optional[str]) -> Optional[str]:
|
| 56 |
+
"""
|
| 57 |
+
Normalize country names to improve simple equality checks.
|
| 58 |
+
|
| 59 |
+
This is intentionally simple and rule-based.
|
| 60 |
+
You can extend the mapping as you see real-world variants.
|
| 61 |
+
"""
|
| 62 |
+
if not name:
|
| 63 |
+
return None
|
| 64 |
+
name = name.strip().lower()
|
| 65 |
+
|
| 66 |
+
mapping = {
|
| 67 |
+
"usa": "united states",
|
| 68 |
+
"u.s.a.": "united states",
|
| 69 |
+
"u.s.": "united states",
|
| 70 |
+
"us": "united states",
|
| 71 |
+
"united states of america": "united states",
|
| 72 |
+
"uk": "united kingdom",
|
| 73 |
+
"u.k.": "united kingdom",
|
| 74 |
+
"england": "united kingdom",
|
| 75 |
+
# Add more mappings here when encounter them in real data
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
return mapping.get(name, name)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def compute_confidence_score_and_tier(
|
| 82 |
+
signals: Dict[str, Any],
|
| 83 |
+
rules: Optional[Dict[str, Any]] = None,
|
| 84 |
+
) -> Tuple[int, str, List[str]]:
|
| 85 |
+
"""
|
| 86 |
+
Compute confidence score and tier for a single accession row.
|
| 87 |
+
|
| 88 |
+
Input `signals` dict is expected to contain:
|
| 89 |
+
|
| 90 |
+
has_geo_loc_name: bool
|
| 91 |
+
has_pubmed: bool
|
| 92 |
+
accession_found_in_text: bool # accession present in extracted external text
|
| 93 |
+
predicted_country: str | None # final model label / country prediction
|
| 94 |
+
genbank_country: str | None # from NCBI / GenBank metadata
|
| 95 |
+
num_publications: int
|
| 96 |
+
missing_key_fields: bool
|
| 97 |
+
known_failure_pattern: bool
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
score (0–100), tier ("high"/"medium"/"low"),
|
| 101 |
+
explanations (list of short human-readable reasons)
|
| 102 |
+
"""
|
| 103 |
+
if rules is None:
|
| 104 |
+
rules = set_rules()
|
| 105 |
+
|
| 106 |
+
score = 0
|
| 107 |
+
explanations: List[str] = []
|
| 108 |
+
|
| 109 |
+
# ---------- Signal 1: Direct evidence strength ----------
|
| 110 |
+
has_geo = bool(signals.get("has_geo_loc_name"))
|
| 111 |
+
has_pubmed = bool(signals.get("has_pubmed"))
|
| 112 |
+
accession_in_text = bool(signals.get("accession_found_in_text"))
|
| 113 |
+
|
| 114 |
+
direct_cfg = rules["direct_evidence"]
|
| 115 |
+
|
| 116 |
+
# We pick the strongest applicable case.
|
| 117 |
+
if has_geo and has_pubmed and accession_in_text:
|
| 118 |
+
score += direct_cfg["explicit_geo_pubmed_text"]
|
| 119 |
+
explanations.append(
|
| 120 |
+
"Accession linked to a country in GenBank and associated publication text."
|
| 121 |
+
)
|
| 122 |
+
elif has_geo and has_pubmed:
|
| 123 |
+
score += direct_cfg["geo_and_pubmed"]
|
| 124 |
+
explanations.append(
|
| 125 |
+
"GenBank geo_loc_name and linked publication found."
|
| 126 |
+
)
|
| 127 |
+
elif has_geo:
|
| 128 |
+
score += direct_cfg["geo_only"]
|
| 129 |
+
explanations.append("GenBank geo_loc_name present.")
|
| 130 |
+
elif accession_in_text:
|
| 131 |
+
score += direct_cfg["accession_in_text_only"]
|
| 132 |
+
explanations.append("Accession keyword found in extracted external text.")
|
| 133 |
+
|
| 134 |
+
# ---------- Signal 2: Cross-source consistency ----------
|
| 135 |
+
pred_country = standardize_location.smart_country_lookup(signals.get("predicted_country").lower())
|
| 136 |
+
if pred_country == "not found":
|
| 137 |
+
pred_country = normalize_country(signals.get("predicted_country"))
|
| 138 |
+
gb_country = standardize_location.smart_country_lookup(signals.get("genbank_country").lower())
|
| 139 |
+
if gb_country == "not found":
|
| 140 |
+
gb_country = normalize_country(signals.get("genbank_country"))
|
| 141 |
+
|
| 142 |
+
cons_cfg = rules["consistency"]
|
| 143 |
+
|
| 144 |
+
if gb_country is not None and pred_country is not None:
|
| 145 |
+
if gb_country == pred_country:
|
| 146 |
+
score += cons_cfg["match"]
|
| 147 |
+
explanations.append(
|
| 148 |
+
"Predicted country matches GenBank country metadata."
|
| 149 |
+
)
|
| 150 |
+
else:
|
| 151 |
+
score += cons_cfg["contradiction"]
|
| 152 |
+
explanations.append(
|
| 153 |
+
"Conflict between predicted country and GenBank country metadata."
|
| 154 |
+
)
|
| 155 |
+
else:
|
| 156 |
+
# Only give "no contradiction" bonus if there is at least some evidence
|
| 157 |
+
if has_geo or has_pubmed or accession_in_text:
|
| 158 |
+
score += cons_cfg["no_contradiction"]
|
| 159 |
+
explanations.append(
|
| 160 |
+
"No contradiction detected across available sources."
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# ---------- Signal 3: Evidence density ----------
|
| 164 |
+
num_pubs = int(signals.get("num_publications", 0))
|
| 165 |
+
dens_cfg = rules["evidence_density"]
|
| 166 |
+
|
| 167 |
+
if num_pubs >= 2:
|
| 168 |
+
score += dens_cfg["two_or_more_pubs"]
|
| 169 |
+
explanations.append("Multiple linked publications available.")
|
| 170 |
+
elif num_pubs == 1:
|
| 171 |
+
score += dens_cfg["one_pub"]
|
| 172 |
+
explanations.append("One linked publication available.")
|
| 173 |
+
# else: 0 publications → no extra score
|
| 174 |
+
|
| 175 |
+
# ---------- Signal 4: Risk flags ----------
|
| 176 |
+
risk_cfg = rules["risk_penalties"]
|
| 177 |
+
|
| 178 |
+
if signals.get("missing_key_fields"):
|
| 179 |
+
score += risk_cfg["missing_key_fields"]
|
| 180 |
+
explanations.append(
|
| 181 |
+
"Missing key metadata fields (higher uncertainty)."
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if signals.get("known_failure_pattern"):
|
| 185 |
+
score += risk_cfg["known_failure_pattern"]
|
| 186 |
+
explanations.append(
|
| 187 |
+
"Accession matches a known risky/failure pattern."
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# ---------- Clamp score and determine tier ----------
|
| 191 |
+
score = max(0, min(100, score))
|
| 192 |
+
|
| 193 |
+
tiers = rules["tiers"]
|
| 194 |
+
if score >= tiers["high_min"]:
|
| 195 |
+
tier = "high"
|
| 196 |
+
elif score >= tiers["medium_min"]:
|
| 197 |
+
tier = "medium"
|
| 198 |
+
else:
|
| 199 |
+
tier = "low"
|
| 200 |
+
|
| 201 |
+
# Keep explanations short and readable
|
| 202 |
+
if len(explanations) > 3:
|
| 203 |
+
explanations = explanations[:3]
|
| 204 |
+
|
| 205 |
+
return score, tier, explanations
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
if __name__ == "__main__":
|
| 209 |
+
# Quick local sanity-check examples (manual smoke tests)
|
| 210 |
+
rules = set_rules()
|
| 211 |
+
|
| 212 |
+
examples = [
|
| 213 |
+
{
|
| 214 |
+
"name": "Strong, clean case",
|
| 215 |
+
"signals": {
|
| 216 |
+
"has_geo_loc_name": True,
|
| 217 |
+
"has_pubmed": True,
|
| 218 |
+
"accession_found_in_text": True,
|
| 219 |
+
"predicted_country": "USA",
|
| 220 |
+
"genbank_country": "United States of America",
|
| 221 |
+
"num_publications": 3,
|
| 222 |
+
"missing_key_fields": False,
|
| 223 |
+
"known_failure_pattern": False,
|
| 224 |
+
},
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"name": "Weak, conflicting case",
|
| 228 |
+
"signals": {
|
| 229 |
+
"has_geo_loc_name": True,
|
| 230 |
+
"has_pubmed": False,
|
| 231 |
+
"accession_found_in_text": False,
|
| 232 |
+
"predicted_country": "Japan",
|
| 233 |
+
"genbank_country": "France",
|
| 234 |
+
"num_publications": 0,
|
| 235 |
+
"missing_key_fields": True,
|
| 236 |
+
"known_failure_pattern": True,
|
| 237 |
+
},
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"name": "Medium, sparse but okay",
|
| 241 |
+
"signals": {
|
| 242 |
+
"has_geo_loc_name": False,
|
| 243 |
+
"has_pubmed": True,
|
| 244 |
+
"accession_found_in_text": False,
|
| 245 |
+
"predicted_country": "United Kingdom",
|
| 246 |
+
"genbank_country": None,
|
| 247 |
+
"num_publications": 1,
|
| 248 |
+
"missing_key_fields": False,
|
| 249 |
+
"known_failure_pattern": False,
|
| 250 |
+
},
|
| 251 |
+
},
|
| 252 |
+
]
|
| 253 |
+
|
| 254 |
+
for ex in examples:
|
| 255 |
+
score, tier, expl = compute_confidence_score_and_tier(
|
| 256 |
+
ex["signals"], rules
|
| 257 |
+
)
|
| 258 |
+
print("====", ex["name"], "====")
|
| 259 |
+
print("Score:", score, "| Tier:", tier)
|
| 260 |
+
print("Reasons:")
|
| 261 |
+
for e in expl:
|
| 262 |
+
print(" -", e)
|
| 263 |
print()
|