Huong
commited on
Commit
·
060e759
1
Parent(s):
933e631
converting OLMoASR-esque model to HF model script
Browse files- convert_openai_to_hf.py +370 -0
convert_openai_to_hf.py
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
"""Converts a Whisper model in OpenAI format to Hugging Face format."""
|
| 3 |
+
# Copyright 2022 The HuggingFace Inc. team and the OpenAI team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
import argparse
|
| 18 |
+
import io
|
| 19 |
+
import json
|
| 20 |
+
import os
|
| 21 |
+
import tempfile
|
| 22 |
+
import urllib
|
| 23 |
+
import warnings
|
| 24 |
+
from typing import Any, List, Optional, Tuple
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
from huggingface_hub.utils import insecure_hashlib
|
| 28 |
+
from torch import nn
|
| 29 |
+
from tqdm import tqdm
|
| 30 |
+
|
| 31 |
+
from transformers import (
|
| 32 |
+
GenerationConfig,
|
| 33 |
+
WhisperConfig,
|
| 34 |
+
WhisperFeatureExtractor,
|
| 35 |
+
WhisperForConditionalGeneration,
|
| 36 |
+
WhisperProcessor,
|
| 37 |
+
WhisperTokenizer,
|
| 38 |
+
WhisperTokenizerFast,
|
| 39 |
+
)
|
| 40 |
+
from transformers.models.whisper.tokenization_whisper import LANGUAGES, bytes_to_unicode
|
| 41 |
+
from transformers.utils.import_utils import _is_package_available
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
_MODELS = {
|
| 45 |
+
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
|
| 46 |
+
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
|
| 47 |
+
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
|
| 48 |
+
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
|
| 49 |
+
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
|
| 50 |
+
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
|
| 51 |
+
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
|
| 52 |
+
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
|
| 53 |
+
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt",
|
| 54 |
+
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
|
| 55 |
+
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
_TOKENIZERS = {
|
| 60 |
+
"multilingual": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/multilingual.tiktoken",
|
| 61 |
+
"english": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/gpt2.tiktoken",
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _get_generation_config(
|
| 66 |
+
is_multilingual: bool,
|
| 67 |
+
num_languages: int = 100,
|
| 68 |
+
openai_version: Optional[str] = None,
|
| 69 |
+
) -> GenerationConfig:
|
| 70 |
+
"""
|
| 71 |
+
Loads the appropriate generation config from HF repo
|
| 72 |
+
"""
|
| 73 |
+
if openai_version is not None:
|
| 74 |
+
repo = f"openai/whisper-{openai_version}"
|
| 75 |
+
elif not is_multilingual:
|
| 76 |
+
repo = "openai/whisper-medium.en"
|
| 77 |
+
elif num_languages < 100:
|
| 78 |
+
repo = "openai/whisper-large-v2"
|
| 79 |
+
else:
|
| 80 |
+
repo = "openai/whisper-large-v3"
|
| 81 |
+
|
| 82 |
+
gen_cfg = GenerationConfig.from_pretrained(repo)
|
| 83 |
+
if openai_version is None:
|
| 84 |
+
gen_cfg.alignment_heads = None
|
| 85 |
+
warnings.warn(
|
| 86 |
+
"Alignment heads have not been included in the generation config, since they are available "
|
| 87 |
+
"only for the original OpenAI checkpoints."
|
| 88 |
+
"If you want to use word-level timestamps with a custom version of Whisper,"
|
| 89 |
+
"see https://github.com/openai/whisper/blob/main/notebooks/Multilingual_ASR.ipynb"
|
| 90 |
+
"for the example of how to produce word-level timestamps manually."
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
return gen_cfg
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def remove_ignore_keys_(state_dict):
|
| 97 |
+
ignore_keys = ["layers", "blocks"]
|
| 98 |
+
for k in ignore_keys:
|
| 99 |
+
state_dict.pop(k, None)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
WHISPER_MAPPING = {
|
| 103 |
+
"blocks": "layers",
|
| 104 |
+
"mlp.0": "fc1",
|
| 105 |
+
"mlp.2": "fc2",
|
| 106 |
+
"mlp_ln": "final_layer_norm",
|
| 107 |
+
".attn.query": ".self_attn.q_proj",
|
| 108 |
+
".attn.key": ".self_attn.k_proj",
|
| 109 |
+
".attn.value": ".self_attn.v_proj",
|
| 110 |
+
".attn_ln": ".self_attn_layer_norm",
|
| 111 |
+
".attn.out": ".self_attn.out_proj",
|
| 112 |
+
".cross_attn.query": ".encoder_attn.q_proj",
|
| 113 |
+
".cross_attn.key": ".encoder_attn.k_proj",
|
| 114 |
+
".cross_attn.value": ".encoder_attn.v_proj",
|
| 115 |
+
".cross_attn_ln": ".encoder_attn_layer_norm",
|
| 116 |
+
".cross_attn.out": ".encoder_attn.out_proj",
|
| 117 |
+
"decoder.ln.": "decoder.layer_norm.",
|
| 118 |
+
"encoder.ln.": "encoder.layer_norm.",
|
| 119 |
+
"token_embedding": "embed_tokens",
|
| 120 |
+
"encoder.positional_embedding": "encoder.embed_positions.weight",
|
| 121 |
+
"decoder.positional_embedding": "decoder.embed_positions.weight",
|
| 122 |
+
"ln_post": "layer_norm",
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def rename_keys(s_dict):
|
| 127 |
+
keys = list(s_dict.keys())
|
| 128 |
+
for key in keys:
|
| 129 |
+
new_key = key
|
| 130 |
+
for k, v in WHISPER_MAPPING.items():
|
| 131 |
+
if k in key:
|
| 132 |
+
new_key = new_key.replace(k, v)
|
| 133 |
+
|
| 134 |
+
print(f"{key} -> {new_key}")
|
| 135 |
+
|
| 136 |
+
s_dict[new_key] = s_dict.pop(key)
|
| 137 |
+
return s_dict
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def make_linear_from_emb(emb):
|
| 141 |
+
vocab_size, emb_size = emb.weight.shape
|
| 142 |
+
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
|
| 143 |
+
lin_layer.weight.data = emb.weight.data
|
| 144 |
+
return lin_layer
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def _download(url: str, root: str) -> Any:
|
| 148 |
+
os.makedirs(root, exist_ok=True)
|
| 149 |
+
filename = os.path.basename(url)
|
| 150 |
+
|
| 151 |
+
expected_sha256 = url.split("/")[-2]
|
| 152 |
+
download_target = os.path.join(root, filename)
|
| 153 |
+
|
| 154 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
| 155 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
| 156 |
+
|
| 157 |
+
if os.path.isfile(download_target):
|
| 158 |
+
model_bytes = open(download_target, "rb").read()
|
| 159 |
+
if insecure_hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
|
| 160 |
+
return torch.load(io.BytesIO(model_bytes))
|
| 161 |
+
else:
|
| 162 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
| 163 |
+
|
| 164 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
| 165 |
+
with tqdm(
|
| 166 |
+
total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024
|
| 167 |
+
) as loop:
|
| 168 |
+
while True:
|
| 169 |
+
buffer = source.read(8192)
|
| 170 |
+
if not buffer:
|
| 171 |
+
break
|
| 172 |
+
|
| 173 |
+
output.write(buffer)
|
| 174 |
+
loop.update(len(buffer))
|
| 175 |
+
|
| 176 |
+
model_bytes = open(download_target, "rb").read()
|
| 177 |
+
if insecure_hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
|
| 178 |
+
raise RuntimeError(
|
| 179 |
+
"Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model."
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
return torch.load(io.BytesIO(model_bytes))
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def convert_openai_whisper_to_tfms(
|
| 186 |
+
checkpoint_path, pytorch_dump_folder_path
|
| 187 |
+
) -> Tuple[WhisperForConditionalGeneration, bool, int]:
|
| 188 |
+
if ".pt" not in checkpoint_path:
|
| 189 |
+
root = os.path.dirname(pytorch_dump_folder_path) or "."
|
| 190 |
+
original_checkpoint = _download(_MODELS[checkpoint_path], root)
|
| 191 |
+
openai_version = checkpoint_path
|
| 192 |
+
else:
|
| 193 |
+
original_checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 194 |
+
openai_version = None
|
| 195 |
+
|
| 196 |
+
dimensions = original_checkpoint["dims"]
|
| 197 |
+
state_dict = original_checkpoint["model_state_dict"]
|
| 198 |
+
proj_out_weights = state_dict["decoder.token_embedding.weight"]
|
| 199 |
+
remove_ignore_keys_(state_dict)
|
| 200 |
+
rename_keys(state_dict)
|
| 201 |
+
tie_embeds = True
|
| 202 |
+
ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0]
|
| 203 |
+
|
| 204 |
+
# a hacky way to properly set up the bos/eos/pad token ids in the model
|
| 205 |
+
endoftext_id = 50257 if dimensions["n_vocab"] > 51865 else 50256
|
| 206 |
+
|
| 207 |
+
config = WhisperConfig(
|
| 208 |
+
vocab_size=dimensions["n_vocab"],
|
| 209 |
+
encoder_ffn_dim=ffn_dim,
|
| 210 |
+
decoder_ffn_dim=ffn_dim,
|
| 211 |
+
num_mel_bins=dimensions["n_mels"],
|
| 212 |
+
d_model=dimensions["n_audio_state"],
|
| 213 |
+
max_target_positions=dimensions["n_text_ctx"],
|
| 214 |
+
encoder_layers=dimensions["n_audio_layer"],
|
| 215 |
+
encoder_attention_heads=dimensions["n_audio_head"],
|
| 216 |
+
decoder_layers=dimensions["n_text_layer"],
|
| 217 |
+
decoder_attention_heads=dimensions["n_text_head"],
|
| 218 |
+
max_source_positions=dimensions["n_audio_ctx"],
|
| 219 |
+
eos_token_id=endoftext_id,
|
| 220 |
+
bos_token_id=endoftext_id,
|
| 221 |
+
pad_token_id=endoftext_id,
|
| 222 |
+
decoder_start_token_id=endoftext_id + 1,
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
model = WhisperForConditionalGeneration(config)
|
| 226 |
+
missing, unexpected = model.model.load_state_dict(state_dict, strict=False)
|
| 227 |
+
if len(missing) > 0 and not set(missing) <= {
|
| 228 |
+
"encoder.embed_positions.weights",
|
| 229 |
+
"decoder.embed_positions.weights",
|
| 230 |
+
}:
|
| 231 |
+
raise ValueError(
|
| 232 |
+
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"
|
| 233 |
+
f" but all the following weights are missing {missing}"
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
if tie_embeds:
|
| 237 |
+
model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens)
|
| 238 |
+
else:
|
| 239 |
+
model.proj_out.weight.data = proj_out_weights
|
| 240 |
+
|
| 241 |
+
# determine those parameters from a model checkpoint as Whisper repo does
|
| 242 |
+
is_multilingual = model.config.vocab_size >= 51865
|
| 243 |
+
num_languages = model.config.vocab_size - 51765 - int(is_multilingual)
|
| 244 |
+
|
| 245 |
+
model.generation_config = _get_generation_config(
|
| 246 |
+
is_multilingual,
|
| 247 |
+
num_languages,
|
| 248 |
+
openai_version,
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
return model, is_multilingual, num_languages
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# Adapted from https://github.com/openai/tiktoken/issues/60#issuecomment-1499977960
|
| 255 |
+
def _bpe(mergeable_ranks, token: bytes, max_rank=None) -> List[bytes]:
|
| 256 |
+
parts = [bytes([b]) for b in token]
|
| 257 |
+
while True:
|
| 258 |
+
min_idx = None
|
| 259 |
+
min_rank = None
|
| 260 |
+
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
|
| 261 |
+
rank = mergeable_ranks.get(pair[0] + pair[1])
|
| 262 |
+
if rank is not None and (min_rank is None or rank < min_rank):
|
| 263 |
+
min_idx = i
|
| 264 |
+
min_rank = rank
|
| 265 |
+
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
|
| 266 |
+
break
|
| 267 |
+
assert min_idx is not None
|
| 268 |
+
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :]
|
| 269 |
+
return parts
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def convert_tiktoken_bpe_to_hf(tiktoken_url: str):
|
| 273 |
+
bpe_ranks = load_tiktoken_bpe(tiktoken_url)
|
| 274 |
+
byte_encoder = bytes_to_unicode()
|
| 275 |
+
|
| 276 |
+
def token_bytes_to_string(b):
|
| 277 |
+
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")])
|
| 278 |
+
|
| 279 |
+
merges = []
|
| 280 |
+
vocab = {}
|
| 281 |
+
for token, rank in bpe_ranks.items():
|
| 282 |
+
vocab[token_bytes_to_string(token)] = rank
|
| 283 |
+
if len(token) == 1:
|
| 284 |
+
continue
|
| 285 |
+
merged = tuple(_bpe(bpe_ranks, token, max_rank=rank))
|
| 286 |
+
if len(merged) == 2: # account for empty token
|
| 287 |
+
merges.append(" ".join(map(token_bytes_to_string, merged)))
|
| 288 |
+
return vocab, merges
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def convert_tiktoken_to_hf(
|
| 292 |
+
multilingual: bool = True, num_languages: int = 100, time_precision=0.02
|
| 293 |
+
) -> WhisperTokenizer:
|
| 294 |
+
# requires whisper, unless we use the path to the tiktoken file
|
| 295 |
+
tiktoken_tokenizer_path = _TOKENIZERS["multilingual" if multilingual else "english"]
|
| 296 |
+
start_of_transcript = ["<|endoftext|>", "<|startoftranscript|>"]
|
| 297 |
+
control_tokens = [
|
| 298 |
+
"<|translate|>",
|
| 299 |
+
"<|transcribe|>",
|
| 300 |
+
"<|startoflm|>",
|
| 301 |
+
"<|startofprev|>",
|
| 302 |
+
"<|nospeech|>",
|
| 303 |
+
"<|notimestamps|>",
|
| 304 |
+
]
|
| 305 |
+
# these are special tokens, not normalized
|
| 306 |
+
language_tokens = [f"<|{k}|>" for k in list(LANGUAGES)[:num_languages]]
|
| 307 |
+
# These are not special but normalized
|
| 308 |
+
timestamp_tokens = [("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)]
|
| 309 |
+
|
| 310 |
+
vocab, merges = convert_tiktoken_bpe_to_hf(tiktoken_tokenizer_path)
|
| 311 |
+
|
| 312 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 313 |
+
vocab_file = f"{tmpdirname}/vocab.json"
|
| 314 |
+
merge_file = f"{tmpdirname}/merges.txt"
|
| 315 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 316 |
+
f.write(json.dumps(vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
| 317 |
+
|
| 318 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
| 319 |
+
writer.write("#version: 0.2\n")
|
| 320 |
+
for bpe_tokens in merges:
|
| 321 |
+
writer.write(bpe_tokens + "\n")
|
| 322 |
+
|
| 323 |
+
hf_tokenizer = WhisperTokenizer(vocab_file, merge_file)
|
| 324 |
+
|
| 325 |
+
hf_tokenizer.add_tokens(start_of_transcript + language_tokens + control_tokens, special_tokens=True)
|
| 326 |
+
hf_tokenizer.add_tokens(timestamp_tokens, special_tokens=False)
|
| 327 |
+
return hf_tokenizer
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
if __name__ == "__main__":
|
| 331 |
+
parser = argparse.ArgumentParser()
|
| 332 |
+
# # Required parameters
|
| 333 |
+
parser.add_argument("--checkpoint_path", type=str, help="Path to the downloaded checkpoints")
|
| 334 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
| 335 |
+
parser.add_argument(
|
| 336 |
+
"--convert_preprocessor",
|
| 337 |
+
type=bool,
|
| 338 |
+
default=False,
|
| 339 |
+
help="Whether or not the preprocessor (tokenizer + feature extractor) should be converted along with the model.",
|
| 340 |
+
)
|
| 341 |
+
args = parser.parse_args()
|
| 342 |
+
|
| 343 |
+
model, is_multilingual, num_languages = convert_openai_whisper_to_tfms(
|
| 344 |
+
args.checkpoint_path, args.pytorch_dump_folder_path
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
if args.convert_preprocessor:
|
| 348 |
+
try:
|
| 349 |
+
if not _is_package_available("tiktoken"):
|
| 350 |
+
raise ModuleNotFoundError(
|
| 351 |
+
"""`tiktoken` is not installed, use `pip install tiktoken` to convert the tokenizer"""
|
| 352 |
+
)
|
| 353 |
+
except Exception as e:
|
| 354 |
+
print(e)
|
| 355 |
+
else:
|
| 356 |
+
from tiktoken.load import load_tiktoken_bpe
|
| 357 |
+
|
| 358 |
+
tokenizer = convert_tiktoken_to_hf(is_multilingual, num_languages)
|
| 359 |
+
feature_extractor = WhisperFeatureExtractor(
|
| 360 |
+
feature_size=model.config.num_mel_bins,
|
| 361 |
+
# the rest of default parameters are the same as hardcoded in openai/whisper
|
| 362 |
+
)
|
| 363 |
+
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
| 364 |
+
processor.save_pretrained(args.pytorch_dump_folder_path)
|
| 365 |
+
|
| 366 |
+
# save fast tokenizer as well
|
| 367 |
+
fast_tokenizer = WhisperTokenizerFast.from_pretrained(args.pytorch_dump_folder_path)
|
| 368 |
+
fast_tokenizer.save_pretrained(args.pytorch_dump_folder_path, legacy_format=False)
|
| 369 |
+
|
| 370 |
+
model.save_pretrained(args.pytorch_dump_folder_path)
|