Spaces:
Running
Running
Upload 24 files
Browse files- mathematics_batch_01.html +247 -229
- mathematics_batch_02.html +249 -258
- mathematics_batch_03.html +249 -248
- mathematics_batch_04.html +246 -199
- mathematics_batch_05.html +108 -24
- mathematics_batch_06.html +108 -24
- mathematics_batch_07.html +106 -21
mathematics_batch_01.html
CHANGED
|
@@ -4,7 +4,97 @@
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 01 - Number Theory - Programming Framework Analysis</title>
|
| 7 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 9 |
<script>
|
| 10 |
mermaid.initialize({
|
|
@@ -17,66 +107,54 @@
|
|
| 17 |
nodeSpacing: 30,
|
| 18 |
rankSpacing: 30,
|
| 19 |
padding: 10
|
|
|
|
|
|
|
|
|
|
| 20 |
}
|
| 21 |
});
|
| 22 |
</script>
|
| 23 |
</head>
|
| 24 |
<body>
|
| 25 |
<div class="container">
|
| 26 |
-
<
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
</header>
|
| 30 |
|
| 31 |
-
<
|
| 32 |
-
|
| 33 |
-
<
|
| 34 |
-
</section>
|
| 35 |
-
|
| 36 |
-
<section class="process">
|
| 37 |
-
<h2>1. Prime Factorization Algorithm Process</h2>
|
| 38 |
-
<div class="figure">
|
| 39 |
-
<div class="mermaid">
|
| 40 |
graph TD
|
| 41 |
-
A1[
|
| 42 |
-
C1[
|
| 43 |
-
E1[
|
| 44 |
-
|
| 45 |
-
B1 --> G1[Number Classification]
|
| 46 |
-
D1 --> H1[Prime Factor Detection]
|
| 47 |
-
F1 --> I1[Factorization Method Selection]
|
| 48 |
-
|
| 49 |
-
G1 --> J1[Trial Division Method]
|
| 50 |
-
H1 --> K1[Prime Factor Extraction]
|
| 51 |
-
I1 --> L1[Recursive Factorization]
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
style A1 fill:#ff6b6b,color:#fff
|
| 82 |
style C1 fill:#ff6b6b,color:#fff
|
|
@@ -105,13 +183,6 @@ graph TD
|
|
| 105 |
style X1 fill:#ffd43b,color:#000
|
| 106 |
style Y1 fill:#ffd43b,color:#000
|
| 107 |
style Z1 fill:#ffd43b,color:#000
|
| 108 |
-
style AA1 fill:#ffd43b,color:#000
|
| 109 |
-
style BB1 fill:#ffd43b,color:#000
|
| 110 |
-
style CC1 fill:#ffd43b,color:#000
|
| 111 |
-
style DD1 fill:#ffd43b,color:#000
|
| 112 |
-
style EE1 fill:#ffd43b,color:#000
|
| 113 |
-
style FF1 fill:#ffd43b,color:#000
|
| 114 |
-
style GG1 fill:#ffd43b,color:#000
|
| 115 |
|
| 116 |
style M1 fill:#51cf66,color:#fff
|
| 117 |
style N1 fill:#51cf66,color:#fff
|
|
@@ -127,90 +198,68 @@ graph TD
|
|
| 127 |
style X1 fill:#51cf66,color:#fff
|
| 128 |
style Y1 fill:#51cf66,color:#fff
|
| 129 |
style Z1 fill:#51cf66,color:#fff
|
| 130 |
-
|
| 131 |
-
style
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
style BB1 fill:#b197fc,color:#fff
|
| 139 |
-
style CC1 fill:#b197fc,color:#fff
|
| 140 |
-
style DD1 fill:#b197fc,color:#fff
|
| 141 |
-
style EE1 fill:#b197fc,color:#fff
|
| 142 |
-
style FF1 fill:#b197fc,color:#fff
|
| 143 |
-
style GG1 fill:#b197fc,color:#fff
|
| 144 |
</div>
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 148 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 149 |
-
</div>
|
| 150 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 151 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Number Theory Methods
|
| 152 |
-
</div>
|
| 153 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 154 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Factorization Operations
|
| 155 |
-
</div>
|
| 156 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 157 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 158 |
-
</div>
|
| 159 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 160 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 161 |
-
</div>
|
| 162 |
</div>
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
<strong>Figure 1.</strong> Prime Factorization Algorithm Process. This number theory process visualization demonstrates systematic decomposition of composite numbers into prime factors. The flowchart shows composite number inputs, number theory methods and algorithms, factorization operations, intermediate calculations, and final prime factorization results.
|
| 166 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
</div>
|
| 168 |
-
</
|
| 169 |
|
| 170 |
-
<
|
| 171 |
-
|
| 172 |
-
<div class="
|
| 173 |
-
<div class="mermaid">
|
| 174 |
graph TD
|
| 175 |
-
A2[Integer
|
| 176 |
-
C2[
|
| 177 |
-
E2[
|
| 178 |
-
|
| 179 |
-
B2 --> G2[Modulus Validation]
|
| 180 |
-
D2 --> H2[Addition Subtraction Multiplication Division]
|
| 181 |
-
F2 --> I2[Modular Arithmetic Method]
|
| 182 |
-
|
| 183 |
-
G2 --> J2[Modulus Processing]
|
| 184 |
-
H2 --> K2[Operation Selection]
|
| 185 |
-
I2 --> L2[Modular Calculation Method]
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
|
| 215 |
style A2 fill:#ff6b6b,color:#fff
|
| 216 |
style C2 fill:#ff6b6b,color:#fff
|
|
@@ -239,13 +288,6 @@ graph TD
|
|
| 239 |
style X2 fill:#ffd43b,color:#000
|
| 240 |
style Y2 fill:#ffd43b,color:#000
|
| 241 |
style Z2 fill:#ffd43b,color:#000
|
| 242 |
-
style AA2 fill:#ffd43b,color:#000
|
| 243 |
-
style BB2 fill:#ffd43b,color:#000
|
| 244 |
-
style CC2 fill:#ffd43b,color:#000
|
| 245 |
-
style DD2 fill:#ffd43b,color:#000
|
| 246 |
-
style EE2 fill:#ffd43b,color:#000
|
| 247 |
-
style FF2 fill:#ffd43b,color:#000
|
| 248 |
-
style GG2 fill:#ffd43b,color:#000
|
| 249 |
|
| 250 |
style M2 fill:#51cf66,color:#fff
|
| 251 |
style N2 fill:#51cf66,color:#fff
|
|
@@ -261,83 +303,68 @@ graph TD
|
|
| 261 |
style X2 fill:#51cf66,color:#fff
|
| 262 |
style Y2 fill:#51cf66,color:#fff
|
| 263 |
style Z2 fill:#51cf66,color:#fff
|
| 264 |
-
|
| 265 |
-
style
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
style GG2 fill:#b197fc,color:#fff
|
| 275 |
</div>
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 279 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 280 |
-
</div>
|
| 281 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 282 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Modular Arithmetic Methods
|
| 283 |
-
</div>
|
| 284 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 285 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Modular Operations
|
| 286 |
-
</div>
|
| 287 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 288 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 289 |
-
</div>
|
| 290 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 291 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 292 |
-
</div>
|
| 293 |
</div>
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
<strong>Figure 2.</strong> Modular Arithmetic Operations Process. This number theory process visualization demonstrates clock arithmetic and congruence calculations. The flowchart shows integer inputs and modulus selection, modular arithmetic methods and rules, modular operations and calculations, intermediate results, and final modular arithmetic outputs.
|
| 297 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
</div>
|
| 299 |
-
</
|
| 300 |
|
| 301 |
-
<
|
| 302 |
-
|
| 303 |
-
<div class="
|
| 304 |
-
<div class="mermaid">
|
| 305 |
graph TD
|
| 306 |
-
A3[
|
| 307 |
-
C3[
|
| 308 |
-
E3[Integer
|
| 309 |
|
| 310 |
-
B3 --> G3[
|
| 311 |
D3 --> H3[Extended Euclidean Algorithm]
|
| 312 |
-
F3 --> I3[GCD
|
| 313 |
|
| 314 |
-
G3 --> J3[
|
| 315 |
-
H3 --> K3[
|
| 316 |
-
I3 --> L3[
|
| 317 |
|
| 318 |
-
J3 --> M3[
|
| 319 |
-
K3 -->
|
| 320 |
-
L3 -->
|
| 321 |
|
| 322 |
-
M3 -->
|
| 323 |
-
N3 -->
|
| 324 |
-
O3 --> Q3[
|
| 325 |
|
| 326 |
-
P3 --> R3[Solution
|
| 327 |
-
Q3 --> S3[
|
| 328 |
-
R3 --> T3[
|
| 329 |
|
| 330 |
-
S3 --> U3[
|
| 331 |
-
T3 --> V3[
|
| 332 |
-
U3 --> W3[
|
| 333 |
|
| 334 |
-
V3 --> X3[
|
| 335 |
-
W3 --> Y3[Diophantine
|
| 336 |
-
X3 --> Z3[
|
| 337 |
-
|
| 338 |
-
Y3 --> AA3[Diophantine Equation Solution]
|
| 339 |
-
Z3 --> BB3[Solution Set Validation]
|
| 340 |
-
AA3 --> CC3[Final Solution Display]
|
| 341 |
|
| 342 |
style A3 fill:#ff6b6b,color:#fff
|
| 343 |
style C3 fill:#ff6b6b,color:#fff
|
|
@@ -366,9 +393,6 @@ graph TD
|
|
| 366 |
style X3 fill:#ffd43b,color:#000
|
| 367 |
style Y3 fill:#ffd43b,color:#000
|
| 368 |
style Z3 fill:#ffd43b,color:#000
|
| 369 |
-
style AA3 fill:#ffd43b,color:#000
|
| 370 |
-
style BB3 fill:#ffd43b,color:#000
|
| 371 |
-
style CC3 fill:#ffd43b,color:#000
|
| 372 |
|
| 373 |
style M3 fill:#51cf66,color:#fff
|
| 374 |
style N3 fill:#51cf66,color:#fff
|
|
@@ -384,49 +408,43 @@ graph TD
|
|
| 384 |
style X3 fill:#51cf66,color:#fff
|
| 385 |
style Y3 fill:#51cf66,color:#fff
|
| 386 |
style Z3 fill:#51cf66,color:#fff
|
| 387 |
-
style AA3 fill:#51cf66,color:#fff
|
| 388 |
-
style BB3 fill:#51cf66,color:#fff
|
| 389 |
-
style CC3 fill:#51cf66,color:#fff
|
| 390 |
|
| 391 |
-
style
|
| 392 |
-
|
| 393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
</div>
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 398 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 399 |
-
</div>
|
| 400 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 401 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Diophantine Methods
|
| 402 |
-
</div>
|
| 403 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 404 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Solution Operations
|
| 405 |
-
</div>
|
| 406 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 407 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 408 |
-
</div>
|
| 409 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 410 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 411 |
-
</div>
|
| 412 |
</div>
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
<strong>Figure 3.</strong> Diophantine Equation Solving Process. This number theory process visualization demonstrates finding integer solutions to polynomial equations. The flowchart shows Diophantine equation inputs, solution strategy methods and algorithms, solution operations and calculations, intermediate results, and final integer solution sets.
|
| 416 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
</div>
|
| 418 |
-
</
|
| 419 |
|
| 420 |
-
<
|
| 421 |
-
<
|
| 422 |
<div class="nav-links">
|
| 423 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 424 |
<a href="mathematics_batch_02.html" class="nav-link">Next: Analysis & Calculus →</a>
|
| 425 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 426 |
</div>
|
| 427 |
-
</
|
| 428 |
|
| 429 |
-
<footer>
|
| 430 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 431 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 432 |
<div class="contact-info">
|
|
@@ -437,7 +455,7 @@ graph TD
|
|
| 437 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 438 |
<p>Email: [email protected]</p>
|
| 439 |
</div>
|
| 440 |
-
</
|
| 441 |
</div>
|
| 442 |
</body>
|
| 443 |
</html>
|
|
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 01 - Number Theory - Programming Framework Analysis</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Times New Roman', Times, serif, 'Arial Unicode MS';
|
| 10 |
+
margin: 0;
|
| 11 |
+
background: #ffffff;
|
| 12 |
+
color: #000000;
|
| 13 |
+
line-height: 1.6;
|
| 14 |
+
font-size: 12pt;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 1000px;
|
| 18 |
+
margin: 0 auto;
|
| 19 |
+
padding: 1.5rem;
|
| 20 |
+
}
|
| 21 |
+
h1, h2, h3 {
|
| 22 |
+
color: #000000;
|
| 23 |
+
margin-top: 1.5rem;
|
| 24 |
+
margin-bottom: 0.75rem;
|
| 25 |
+
}
|
| 26 |
+
h1 {
|
| 27 |
+
font-size: 18pt;
|
| 28 |
+
text-align: center;
|
| 29 |
+
}
|
| 30 |
+
h2 {
|
| 31 |
+
font-size: 16pt;
|
| 32 |
+
border-bottom: 2px solid #000;
|
| 33 |
+
padding-bottom: 0.5rem;
|
| 34 |
+
}
|
| 35 |
+
h3 {
|
| 36 |
+
font-size: 14pt;
|
| 37 |
+
}
|
| 38 |
+
p {
|
| 39 |
+
margin-bottom: 1rem;
|
| 40 |
+
text-align: justify;
|
| 41 |
+
}
|
| 42 |
+
.figure {
|
| 43 |
+
margin: 2rem 0;
|
| 44 |
+
text-align: center;
|
| 45 |
+
border: 1px solid #ccc;
|
| 46 |
+
padding: 1rem;
|
| 47 |
+
background: #f9f9f9;
|
| 48 |
+
}
|
| 49 |
+
.figure-caption {
|
| 50 |
+
margin-top: 1rem;
|
| 51 |
+
font-style: italic;
|
| 52 |
+
text-align: left;
|
| 53 |
+
}
|
| 54 |
+
.mermaid {
|
| 55 |
+
background: white;
|
| 56 |
+
padding: 1rem;
|
| 57 |
+
border-radius: 4px;
|
| 58 |
+
}
|
| 59 |
+
.navigation {
|
| 60 |
+
margin: 3rem 0;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
background: #f8f9fa;
|
| 63 |
+
border-radius: 8px;
|
| 64 |
+
}
|
| 65 |
+
.nav-links {
|
| 66 |
+
display: flex;
|
| 67 |
+
flex-wrap: wrap;
|
| 68 |
+
gap: 1rem;
|
| 69 |
+
justify-content: center;
|
| 70 |
+
}
|
| 71 |
+
.nav-link {
|
| 72 |
+
color: #007bff;
|
| 73 |
+
text-decoration: none;
|
| 74 |
+
padding: 0.5rem 1rem;
|
| 75 |
+
border: 1px solid #007bff;
|
| 76 |
+
border-radius: 4px;
|
| 77 |
+
transition: all 0.3s ease;
|
| 78 |
+
}
|
| 79 |
+
.nav-link:hover {
|
| 80 |
+
background: #007bff;
|
| 81 |
+
color: white;
|
| 82 |
+
}
|
| 83 |
+
.footer {
|
| 84 |
+
margin-top: 3rem;
|
| 85 |
+
padding: 1rem;
|
| 86 |
+
background: #f8f9fa;
|
| 87 |
+
border-radius: 8px;
|
| 88 |
+
text-align: center;
|
| 89 |
+
}
|
| 90 |
+
.contact-info {
|
| 91 |
+
margin-top: 1rem;
|
| 92 |
+
}
|
| 93 |
+
.contact-info p {
|
| 94 |
+
margin: 0.25rem 0;
|
| 95 |
+
text-align: center;
|
| 96 |
+
}
|
| 97 |
+
</style>
|
| 98 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 99 |
<script>
|
| 100 |
mermaid.initialize({
|
|
|
|
| 107 |
nodeSpacing: 30,
|
| 108 |
rankSpacing: 30,
|
| 109 |
padding: 10
|
| 110 |
+
},
|
| 111 |
+
themeVariables: {
|
| 112 |
+
fontFamily: 'Arial Unicode MS, Arial, sans-serif'
|
| 113 |
}
|
| 114 |
});
|
| 115 |
</script>
|
| 116 |
</head>
|
| 117 |
<body>
|
| 118 |
<div class="container">
|
| 119 |
+
<h1>Mathematics Batch 01 - Number Theory - Programming Framework Analysis</h1>
|
| 120 |
+
|
| 121 |
+
<p>This document presents number theory processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.</p>
|
|
|
|
| 122 |
|
| 123 |
+
<h2>1. Prime Number Generation Process</h2>
|
| 124 |
+
<div class="figure">
|
| 125 |
+
<div class="mermaid">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
graph TD
|
| 127 |
+
A1[Range Definition] --> B1[Sieve Algorithm Selection]
|
| 128 |
+
C1[Upper Bound] --> D1[Memory Allocation]
|
| 129 |
+
E1[Optimization Strategy] --> F1[Algorithm Implementation]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
B1 --> G1[Eratosthenes Sieve]
|
| 132 |
+
D1 --> H1[Boolean Array Creation]
|
| 133 |
+
F1 --> I1[Marking Strategy]
|
| 134 |
|
| 135 |
+
G1 --> J1[Initialize All True]
|
| 136 |
+
H1 --> K1[Array Size Calculation]
|
| 137 |
+
I1 --> L1[Prime Detection]
|
| 138 |
|
| 139 |
+
J1 --> M1[Mark 0 and 1 False]
|
| 140 |
+
K1 --> L1
|
| 141 |
+
L1 --> N1[Square Root Optimization]
|
| 142 |
|
| 143 |
+
M1 --> O1[Iterate from 2]
|
| 144 |
+
N1 --> P1[Stop at Square Root]
|
| 145 |
+
O1 --> Q1[Prime Number Process]
|
| 146 |
|
| 147 |
+
P1 --> R1[Mark Multiples False]
|
| 148 |
+
Q1 --> S1[Collect Prime Numbers]
|
| 149 |
+
R1 --> T1[Prime Number Result]
|
| 150 |
|
| 151 |
+
S1 --> U1[Prime Number Validation]
|
| 152 |
+
T1 --> V1[Prime Number Count]
|
| 153 |
+
U1 --> W1[Prime Number Output]
|
| 154 |
|
| 155 |
+
V1 --> X1[Prime Number Analysis]
|
| 156 |
+
W1 --> Y1[Prime Number Final Result]
|
| 157 |
+
X1 --> Z1[Prime Number Analysis Complete]
|
| 158 |
|
| 159 |
style A1 fill:#ff6b6b,color:#fff
|
| 160 |
style C1 fill:#ff6b6b,color:#fff
|
|
|
|
| 183 |
style X1 fill:#ffd43b,color:#000
|
| 184 |
style Y1 fill:#ffd43b,color:#000
|
| 185 |
style Z1 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
style M1 fill:#51cf66,color:#fff
|
| 188 |
style N1 fill:#51cf66,color:#fff
|
|
|
|
| 198 |
style X1 fill:#51cf66,color:#fff
|
| 199 |
style Y1 fill:#51cf66,color:#fff
|
| 200 |
style Z1 fill:#51cf66,color:#fff
|
| 201 |
+
|
| 202 |
+
style Z1 fill:#b197fc,color:#fff
|
| 203 |
+
</div>
|
| 204 |
+
|
| 205 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 206 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 207 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
</div>
|
| 209 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 210 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Number Theory Methods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
</div>
|
| 212 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 213 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Prime Operations
|
|
|
|
| 214 |
</div>
|
| 215 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 216 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 217 |
+
</div>
|
| 218 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 219 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 220 |
+
</div>
|
| 221 |
+
</div>
|
| 222 |
+
|
| 223 |
+
<div class="figure-caption">
|
| 224 |
+
<strong>Figure 1.</strong> Prime Number Generation Process. This number theory process visualization demonstrates the Sieve of Eratosthenes algorithm. The flowchart shows range inputs and optimization strategies, number theory methods and sieve algorithms, prime operations and marking strategies, intermediate results, and final prime number outputs.
|
| 225 |
</div>
|
| 226 |
+
</div>
|
| 227 |
|
| 228 |
+
<h2>2. Modular Arithmetic Process</h2>
|
| 229 |
+
<div class="figure">
|
| 230 |
+
<div class="mermaid">
|
|
|
|
| 231 |
graph TD
|
| 232 |
+
A2[Integer a] --> B2[Modulus m]
|
| 233 |
+
C2[Operation Type] --> D2[Modular Arithmetic]
|
| 234 |
+
E2[Congruence Analysis] --> F2[Residue Calculation]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
B2 --> G2[Modulo Operation]
|
| 237 |
+
D2 --> H2[Addition Modulo m]
|
| 238 |
+
F2 --> I2[Multiplication Modulo m]
|
| 239 |
|
| 240 |
+
G2 --> J2[Division Modulo m]
|
| 241 |
+
H2 --> K2[Subtraction Modulo m]
|
| 242 |
+
I2 --> L2[Exponentiation Modulo m]
|
| 243 |
|
| 244 |
+
J2 --> M2[Multiplicative Inverse]
|
| 245 |
+
K2 --> L2
|
| 246 |
+
L2 --> N2[Fermat Little Theorem]
|
| 247 |
|
| 248 |
+
M2 --> O2[Extended Euclidean Algorithm]
|
| 249 |
+
N2 --> P2[Euler Totient Function]
|
| 250 |
+
O2 --> Q2[Modular Arithmetic Process]
|
| 251 |
|
| 252 |
+
P2 --> R2[Chinese Remainder Theorem]
|
| 253 |
+
Q2 --> S2[Modular Arithmetic Validation]
|
| 254 |
+
R2 --> T2[Modular Arithmetic Result]
|
| 255 |
|
| 256 |
+
S2 --> U2[Modular Arithmetic Analysis]
|
| 257 |
+
T2 --> V2[Modular Arithmetic Parameters]
|
| 258 |
+
U2 --> W2[Modular Arithmetic Output]
|
| 259 |
|
| 260 |
+
V2 --> X2[Modular Arithmetic Analysis]
|
| 261 |
+
W2 --> Y2[Modular Arithmetic Final Result]
|
| 262 |
+
X2 --> Z2[Modular Arithmetic Analysis Complete]
|
| 263 |
|
| 264 |
style A2 fill:#ff6b6b,color:#fff
|
| 265 |
style C2 fill:#ff6b6b,color:#fff
|
|
|
|
| 288 |
style X2 fill:#ffd43b,color:#000
|
| 289 |
style Y2 fill:#ffd43b,color:#000
|
| 290 |
style Z2 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
style M2 fill:#51cf66,color:#fff
|
| 293 |
style N2 fill:#51cf66,color:#fff
|
|
|
|
| 303 |
style X2 fill:#51cf66,color:#fff
|
| 304 |
style Y2 fill:#51cf66,color:#fff
|
| 305 |
style Z2 fill:#51cf66,color:#fff
|
| 306 |
+
|
| 307 |
+
style Z2 fill:#b197fc,color:#fff
|
| 308 |
+
</div>
|
| 309 |
+
|
| 310 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 311 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 312 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 313 |
+
</div>
|
| 314 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 315 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Modular Methods
|
|
|
|
| 316 |
</div>
|
| 317 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 318 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Modular Operations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
</div>
|
| 320 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 321 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
|
|
|
| 322 |
</div>
|
| 323 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 324 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 325 |
+
</div>
|
| 326 |
+
</div>
|
| 327 |
+
|
| 328 |
+
<div class="figure-caption">
|
| 329 |
+
<strong>Figure 2.</strong> Modular Arithmetic Process. This number theory process visualization demonstrates modular arithmetic operations and congruence analysis. The flowchart shows integer inputs and operation types, modular methods and arithmetic operations, modular operations and residue calculations, intermediate results, and final modular arithmetic outputs.
|
| 330 |
</div>
|
| 331 |
+
</div>
|
| 332 |
|
| 333 |
+
<h2>3. Diophantine Equations Process</h2>
|
| 334 |
+
<div class="figure">
|
| 335 |
+
<div class="mermaid">
|
|
|
|
| 336 |
graph TD
|
| 337 |
+
A3[Linear Equation] --> B3[Variable Analysis]
|
| 338 |
+
C3[Coefficient Analysis] --> D3[Solution Strategy]
|
| 339 |
+
E3[Integer Constraints] --> F3[Existence Check]
|
| 340 |
|
| 341 |
+
B3 --> G3[Two Variable Equation]
|
| 342 |
D3 --> H3[Extended Euclidean Algorithm]
|
| 343 |
+
F3 --> I3[GCD Analysis]
|
| 344 |
|
| 345 |
+
G3 --> J3[General Solution]
|
| 346 |
+
H3 --> K3[Particular Solution]
|
| 347 |
+
I3 --> L3[Parametric Form]
|
| 348 |
|
| 349 |
+
J3 --> M3[Solution Verification]
|
| 350 |
+
K3 --> L3
|
| 351 |
+
L3 --> N3[Solution Validation]
|
| 352 |
|
| 353 |
+
M3 --> O3[Integer Solutions]
|
| 354 |
+
N3 --> P3[Solution Bounds]
|
| 355 |
+
O3 --> Q3[Diophantine Equations Process]
|
| 356 |
|
| 357 |
+
P3 --> R3[Solution Enumeration]
|
| 358 |
+
Q3 --> S3[Diophantine Equations Validation]
|
| 359 |
+
R3 --> T3[Diophantine Equations Result]
|
| 360 |
|
| 361 |
+
S3 --> U3[Diophantine Equations Analysis]
|
| 362 |
+
T3 --> V3[Diophantine Equations Parameters]
|
| 363 |
+
U3 --> W3[Diophantine Equations Output]
|
| 364 |
|
| 365 |
+
V3 --> X3[Diophantine Equations Analysis]
|
| 366 |
+
W3 --> Y3[Diophantine Equations Final Result]
|
| 367 |
+
X3 --> Z3[Diophantine Equations Analysis Complete]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
style A3 fill:#ff6b6b,color:#fff
|
| 370 |
style C3 fill:#ff6b6b,color:#fff
|
|
|
|
| 393 |
style X3 fill:#ffd43b,color:#000
|
| 394 |
style Y3 fill:#ffd43b,color:#000
|
| 395 |
style Z3 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
style M3 fill:#51cf66,color:#fff
|
| 398 |
style N3 fill:#51cf66,color:#fff
|
|
|
|
| 408 |
style X3 fill:#51cf66,color:#fff
|
| 409 |
style Y3 fill:#51cf66,color:#fff
|
| 410 |
style Z3 fill:#51cf66,color:#fff
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
+
style Z3 fill:#b197fc,color:#fff
|
| 413 |
+
</div>
|
| 414 |
+
|
| 415 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 416 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 417 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 418 |
+
</div>
|
| 419 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 420 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Diophantine Methods
|
| 421 |
</div>
|
| 422 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 423 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Solution Operations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
</div>
|
| 425 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 426 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
|
|
|
| 427 |
</div>
|
| 428 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 429 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 430 |
+
</div>
|
| 431 |
+
</div>
|
| 432 |
+
|
| 433 |
+
<div class="figure-caption">
|
| 434 |
+
<strong>Figure 3.</strong> Diophantine Equations Process. This number theory process visualization demonstrates integer solution finding for linear equations. The flowchart shows equation inputs and coefficient analysis, Diophantine methods and solution strategies, solution operations and verification, intermediate results, and final Diophantine equation outputs.
|
| 435 |
</div>
|
| 436 |
+
</div>
|
| 437 |
|
| 438 |
+
<div class="navigation">
|
| 439 |
+
<h3>Navigation</h3>
|
| 440 |
<div class="nav-links">
|
| 441 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 442 |
<a href="mathematics_batch_02.html" class="nav-link">Next: Analysis & Calculus →</a>
|
| 443 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 444 |
</div>
|
| 445 |
+
</div>
|
| 446 |
|
| 447 |
+
<div class="footer">
|
| 448 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 449 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 450 |
<div class="contact-info">
|
|
|
|
| 455 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 456 |
<p>Email: [email protected]</p>
|
| 457 |
</div>
|
| 458 |
+
</div>
|
| 459 |
</div>
|
| 460 |
</body>
|
| 461 |
</html>
|
mathematics_batch_02.html
CHANGED
|
@@ -4,7 +4,97 @@
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 02 - Analysis & Calculus - Programming Framework Analysis</title>
|
| 7 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 9 |
<script>
|
| 10 |
mermaid.initialize({
|
|
@@ -17,70 +107,54 @@
|
|
| 17 |
nodeSpacing: 30,
|
| 18 |
rankSpacing: 30,
|
| 19 |
padding: 10
|
|
|
|
|
|
|
|
|
|
| 20 |
}
|
| 21 |
});
|
| 22 |
</script>
|
| 23 |
</head>
|
| 24 |
<body>
|
| 25 |
<div class="container">
|
| 26 |
-
<
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
</header>
|
| 30 |
|
| 31 |
-
<
|
| 32 |
-
|
| 33 |
-
<
|
| 34 |
-
</section>
|
| 35 |
-
|
| 36 |
-
<section class="process">
|
| 37 |
-
<h2>1. Taylor Series Expansion Process</h2>
|
| 38 |
-
<div class="figure">
|
| 39 |
-
<div class="mermaid">
|
| 40 |
graph TD
|
| 41 |
-
A1[Function
|
| 42 |
-
C1[
|
| 43 |
-
E1[
|
| 44 |
-
|
| 45 |
-
B1 --> G1[Center Point a Selection]
|
| 46 |
-
D1 --> H1[Taylor Series Formula]
|
| 47 |
-
F1 --> I1[Convergence Testing]
|
| 48 |
-
|
| 49 |
-
G1 --> J1[Function Evaluation at a]
|
| 50 |
-
H1 --> K1[Derivative Calculation]
|
| 51 |
-
I1 --> L1[Ratio Test Application]
|
| 52 |
-
|
| 53 |
-
J1 --> M1[Zeroth Term Calculation]
|
| 54 |
-
K1 --> N1[First Derivative f prime of a]
|
| 55 |
-
L1 --> O1[Convergence Radius R]
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
|
| 85 |
style A1 fill:#ff6b6b,color:#fff
|
| 86 |
style C1 fill:#ff6b6b,color:#fff
|
|
@@ -109,15 +183,6 @@ graph TD
|
|
| 109 |
style X1 fill:#ffd43b,color:#000
|
| 110 |
style Y1 fill:#ffd43b,color:#000
|
| 111 |
style Z1 fill:#ffd43b,color:#000
|
| 112 |
-
style AA1 fill:#ffd43b,color:#000
|
| 113 |
-
style BB1 fill:#ffd43b,color:#000
|
| 114 |
-
style CC1 fill:#ffd43b,color:#000
|
| 115 |
-
style DD1 fill:#ffd43b,color:#000
|
| 116 |
-
style EE1 fill:#ffd43b,color:#000
|
| 117 |
-
style FF1 fill:#ffd43b,color:#000
|
| 118 |
-
style GG1 fill:#ffd43b,color:#000
|
| 119 |
-
style HH1 fill:#ffd43b,color:#000
|
| 120 |
-
style II1 fill:#ffd43b,color:#000
|
| 121 |
|
| 122 |
style M1 fill:#51cf66,color:#fff
|
| 123 |
style N1 fill:#51cf66,color:#fff
|
|
@@ -133,91 +198,68 @@ graph TD
|
|
| 133 |
style X1 fill:#51cf66,color:#fff
|
| 134 |
style Y1 fill:#51cf66,color:#fff
|
| 135 |
style Z1 fill:#51cf66,color:#fff
|
| 136 |
-
|
| 137 |
-
style
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
style II1 fill:#b197fc,color:#fff
|
| 147 |
</div>
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 151 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 152 |
-
</div>
|
| 153 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 154 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Series Methods
|
| 155 |
-
</div>
|
| 156 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 157 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Expansion Operations
|
| 158 |
-
</div>
|
| 159 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 160 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 161 |
-
</div>
|
| 162 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 163 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 164 |
-
</div>
|
| 165 |
</div>
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
<strong>Figure 1.</strong> Taylor Series Expansion Process. This calculus process visualization demonstrates function approximation using polynomial series. The flowchart shows function inputs and expansion parameters, series methods and formulas, expansion operations and calculations, intermediate terms, and final function approximation results.
|
| 169 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
</div>
|
| 171 |
-
</
|
| 172 |
|
| 173 |
-
<
|
| 174 |
-
|
| 175 |
-
<div class="
|
| 176 |
-
<div class="mermaid">
|
| 177 |
graph TD
|
| 178 |
-
A2[
|
| 179 |
-
C2[
|
| 180 |
-
E2[
|
| 181 |
-
|
| 182 |
-
B2 --> G2[First Order Linear]
|
| 183 |
-
D2 --> H2[Separation of Variables]
|
| 184 |
-
F2 --> I2[Initial Value Problem]
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
BB2 --> EE2[Integration of Right Side]
|
| 215 |
-
CC2 --> FF2[Particular Solution]
|
| 216 |
-
DD2 --> GG2[Differential Equation Solution]
|
| 217 |
-
|
| 218 |
-
EE2 --> HH2[General Solution]
|
| 219 |
-
FF2 --> GG2
|
| 220 |
-
GG2 --> II2[Final Solution Display]
|
| 221 |
|
| 222 |
style A2 fill:#ff6b6b,color:#fff
|
| 223 |
style C2 fill:#ff6b6b,color:#fff
|
|
@@ -246,15 +288,6 @@ graph TD
|
|
| 246 |
style X2 fill:#ffd43b,color:#000
|
| 247 |
style Y2 fill:#ffd43b,color:#000
|
| 248 |
style Z2 fill:#ffd43b,color:#000
|
| 249 |
-
style AA2 fill:#ffd43b,color:#000
|
| 250 |
-
style BB2 fill:#ffd43b,color:#000
|
| 251 |
-
style CC2 fill:#ffd43b,color:#000
|
| 252 |
-
style DD2 fill:#ffd43b,color:#000
|
| 253 |
-
style EE2 fill:#ffd43b,color:#000
|
| 254 |
-
style FF2 fill:#ffd43b,color:#000
|
| 255 |
-
style GG2 fill:#ffd43b,color:#000
|
| 256 |
-
style HH2 fill:#ffd43b,color:#000
|
| 257 |
-
style II2 fill:#ffd43b,color:#000
|
| 258 |
|
| 259 |
style M2 fill:#51cf66,color:#fff
|
| 260 |
style N2 fill:#51cf66,color:#fff
|
|
@@ -270,91 +303,68 @@ graph TD
|
|
| 270 |
style X2 fill:#51cf66,color:#fff
|
| 271 |
style Y2 fill:#51cf66,color:#fff
|
| 272 |
style Z2 fill:#51cf66,color:#fff
|
| 273 |
-
|
| 274 |
-
style
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
| 284 |
</div>
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 288 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 289 |
-
</div>
|
| 290 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 291 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Differential Methods
|
| 292 |
-
</div>
|
| 293 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 294 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Solution Operations
|
| 295 |
-
</div>
|
| 296 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 297 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 298 |
-
</div>
|
| 299 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 300 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 301 |
-
</div>
|
| 302 |
</div>
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
<strong>Figure 2.</strong> Differential Equation Solving Process. This calculus process visualization demonstrates solving first-order linear differential equations. The flowchart shows differential equation inputs and conditions, solution methods and algorithms, solution operations and calculations, intermediate results, and final differential equation solutions.
|
| 306 |
</div>
|
| 307 |
</div>
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
-
<
|
| 311 |
-
|
| 312 |
-
<div class="
|
| 313 |
-
<div class="mermaid">
|
| 314 |
graph TD
|
| 315 |
-
A3[
|
| 316 |
-
C3[
|
| 317 |
-
E3[
|
| 318 |
-
|
| 319 |
-
B3 --> G3[Maximization Problem]
|
| 320 |
-
D3 --> H3[Equality Constraints g of x equals 0]
|
| 321 |
-
F3 --> I3[Inequality Constraints h of x less than or equal to 0]
|
| 322 |
-
|
| 323 |
-
G3 --> J3[Minimization Problem]
|
| 324 |
-
H3 --> K3[Lagrange Multiplier Method]
|
| 325 |
-
I3 --> L3[Karush Kuhn Tucker Conditions]
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
EE3 --> GG3[Optimal Value Calculation]
|
| 356 |
-
FF3 --> HH3[Solution Verification]
|
| 357 |
-
GG3 --> II3[Optimization Output]
|
| 358 |
|
| 359 |
style A3 fill:#ff6b6b,color:#fff
|
| 360 |
style C3 fill:#ff6b6b,color:#fff
|
|
@@ -383,15 +393,6 @@ graph TD
|
|
| 383 |
style X3 fill:#ffd43b,color:#000
|
| 384 |
style Y3 fill:#ffd43b,color:#000
|
| 385 |
style Z3 fill:#ffd43b,color:#000
|
| 386 |
-
style AA3 fill:#ffd43b,color:#000
|
| 387 |
-
style BB3 fill:#ffd43b,color:#000
|
| 388 |
-
style CC3 fill:#ffd43b,color:#000
|
| 389 |
-
style DD3 fill:#ffd43b,color:#000
|
| 390 |
-
style EE3 fill:#ffd43b,color:#000
|
| 391 |
-
style FF3 fill:#ffd43b,color:#000
|
| 392 |
-
style GG3 fill:#ffd43b,color:#000
|
| 393 |
-
style HH3 fill:#ffd43b,color:#000
|
| 394 |
-
style II3 fill:#ffd43b,color:#000
|
| 395 |
|
| 396 |
style M3 fill:#51cf66,color:#fff
|
| 397 |
style N3 fill:#51cf66,color:#fff
|
|
@@ -407,54 +408,44 @@ graph TD
|
|
| 407 |
style X3 fill:#51cf66,color:#fff
|
| 408 |
style Y3 fill:#51cf66,color:#fff
|
| 409 |
style Z3 fill:#51cf66,color:#fff
|
| 410 |
-
|
| 411 |
-
style
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
style HH3 fill:#51cf66,color:#fff
|
| 418 |
-
style II3 fill:#51cf66,color:#fff
|
| 419 |
-
|
| 420 |
-
style II3 fill:#b197fc,color:#fff
|
| 421 |
</div>
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 425 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 426 |
-
</div>
|
| 427 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 428 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Optimization Methods
|
| 429 |
-
</div>
|
| 430 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 431 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Optimization Operations
|
| 432 |
-
</div>
|
| 433 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 434 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 435 |
-
</div>
|
| 436 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 437 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 438 |
-
</div>
|
| 439 |
</div>
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
<strong>Figure 3.</strong> Optimization Problems Process. This calculus process visualization demonstrates finding maxima and minima using calculus methods. The flowchart shows objective function inputs and constraints, optimization methods and algorithms, optimization operations and calculations, intermediate results, and final optimal solutions.
|
| 443 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
</div>
|
| 445 |
-
</
|
| 446 |
|
| 447 |
-
<
|
| 448 |
-
<
|
| 449 |
<div class="nav-links">
|
| 450 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 451 |
<a href="mathematics_batch_01.html" class="nav-link">← Previous: Number Theory</a>
|
| 452 |
<a href="mathematics_batch_03.html" class="nav-link">Next: Abstract Algebra →</a>
|
| 453 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 454 |
</div>
|
| 455 |
-
</
|
| 456 |
|
| 457 |
-
<footer>
|
| 458 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 459 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 460 |
<div class="contact-info">
|
|
@@ -465,7 +456,7 @@ graph TD
|
|
| 465 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 466 |
<p>Email: [email protected]</p>
|
| 467 |
</div>
|
| 468 |
-
</
|
| 469 |
</div>
|
| 470 |
</body>
|
| 471 |
</html>
|
|
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 02 - Analysis & Calculus - Programming Framework Analysis</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Times New Roman', Times, serif, 'Arial Unicode MS';
|
| 10 |
+
margin: 0;
|
| 11 |
+
background: #ffffff;
|
| 12 |
+
color: #000000;
|
| 13 |
+
line-height: 1.6;
|
| 14 |
+
font-size: 12pt;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 1000px;
|
| 18 |
+
margin: 0 auto;
|
| 19 |
+
padding: 1.5rem;
|
| 20 |
+
}
|
| 21 |
+
h1, h2, h3 {
|
| 22 |
+
color: #000000;
|
| 23 |
+
margin-top: 1.5rem;
|
| 24 |
+
margin-bottom: 0.75rem;
|
| 25 |
+
}
|
| 26 |
+
h1 {
|
| 27 |
+
font-size: 18pt;
|
| 28 |
+
text-align: center;
|
| 29 |
+
}
|
| 30 |
+
h2 {
|
| 31 |
+
font-size: 16pt;
|
| 32 |
+
border-bottom: 2px solid #000;
|
| 33 |
+
padding-bottom: 0.5rem;
|
| 34 |
+
}
|
| 35 |
+
h3 {
|
| 36 |
+
font-size: 14pt;
|
| 37 |
+
}
|
| 38 |
+
p {
|
| 39 |
+
margin-bottom: 1rem;
|
| 40 |
+
text-align: justify;
|
| 41 |
+
}
|
| 42 |
+
.figure {
|
| 43 |
+
margin: 2rem 0;
|
| 44 |
+
text-align: center;
|
| 45 |
+
border: 1px solid #ccc;
|
| 46 |
+
padding: 1rem;
|
| 47 |
+
background: #f9f9f9;
|
| 48 |
+
}
|
| 49 |
+
.figure-caption {
|
| 50 |
+
margin-top: 1rem;
|
| 51 |
+
font-style: italic;
|
| 52 |
+
text-align: left;
|
| 53 |
+
}
|
| 54 |
+
.mermaid {
|
| 55 |
+
background: white;
|
| 56 |
+
padding: 1rem;
|
| 57 |
+
border-radius: 4px;
|
| 58 |
+
}
|
| 59 |
+
.navigation {
|
| 60 |
+
margin: 3rem 0;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
background: #f8f9fa;
|
| 63 |
+
border-radius: 8px;
|
| 64 |
+
}
|
| 65 |
+
.nav-links {
|
| 66 |
+
display: flex;
|
| 67 |
+
flex-wrap: wrap;
|
| 68 |
+
gap: 1rem;
|
| 69 |
+
justify-content: center;
|
| 70 |
+
}
|
| 71 |
+
.nav-link {
|
| 72 |
+
color: #007bff;
|
| 73 |
+
text-decoration: none;
|
| 74 |
+
padding: 0.5rem 1rem;
|
| 75 |
+
border: 1px solid #007bff;
|
| 76 |
+
border-radius: 4px;
|
| 77 |
+
transition: all 0.3s ease;
|
| 78 |
+
}
|
| 79 |
+
.nav-link:hover {
|
| 80 |
+
background: #007bff;
|
| 81 |
+
color: white;
|
| 82 |
+
}
|
| 83 |
+
.footer {
|
| 84 |
+
margin-top: 3rem;
|
| 85 |
+
padding: 1rem;
|
| 86 |
+
background: #f8f9fa;
|
| 87 |
+
border-radius: 8px;
|
| 88 |
+
text-align: center;
|
| 89 |
+
}
|
| 90 |
+
.contact-info {
|
| 91 |
+
margin-top: 1rem;
|
| 92 |
+
}
|
| 93 |
+
.contact-info p {
|
| 94 |
+
margin: 0.25rem 0;
|
| 95 |
+
text-align: center;
|
| 96 |
+
}
|
| 97 |
+
</style>
|
| 98 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 99 |
<script>
|
| 100 |
mermaid.initialize({
|
|
|
|
| 107 |
nodeSpacing: 30,
|
| 108 |
rankSpacing: 30,
|
| 109 |
padding: 10
|
| 110 |
+
},
|
| 111 |
+
themeVariables: {
|
| 112 |
+
fontFamily: 'Arial Unicode MS, Arial, sans-serif'
|
| 113 |
}
|
| 114 |
});
|
| 115 |
</script>
|
| 116 |
</head>
|
| 117 |
<body>
|
| 118 |
<div class="container">
|
| 119 |
+
<h1>Mathematics Batch 02 - Analysis & Calculus - Programming Framework Analysis</h1>
|
| 120 |
+
|
| 121 |
+
<p>This document presents analysis and calculus processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.</p>
|
|
|
|
| 122 |
|
| 123 |
+
<h2>1. Limit Calculation Process</h2>
|
| 124 |
+
<div class="figure">
|
| 125 |
+
<div class="mermaid">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
graph TD
|
| 127 |
+
A1[Function f of x] --> B1[Point of Interest]
|
| 128 |
+
C1[Approach Direction] --> D1[Limit Analysis]
|
| 129 |
+
E1[Indeterminate Forms] --> F1[L'Hopital Rule]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
B1 --> G1[Direct Substitution]
|
| 132 |
+
D1 --> H1[Left Hand Limit]
|
| 133 |
+
F1 --> I1[Right Hand Limit]
|
| 134 |
|
| 135 |
+
G1 --> J1[Limit Evaluation]
|
| 136 |
+
H1 --> K1[Limit from Below]
|
| 137 |
+
I1 --> L1[Limit from Above]
|
| 138 |
|
| 139 |
+
J1 --> M1[Limit Exists Question]
|
| 140 |
+
K1 --> L1
|
| 141 |
+
L1 --> N1[Limit Comparison]
|
| 142 |
|
| 143 |
+
M1 --> O1[Limit Value]
|
| 144 |
+
N1 --> P1[One Sided Limits]
|
| 145 |
+
O1 --> Q1[Limit Calculation Process]
|
| 146 |
|
| 147 |
+
P1 --> R1[Limit Validation]
|
| 148 |
+
Q1 --> S1[Limit Verification]
|
| 149 |
+
R1 --> T1[Limit Calculation Result]
|
| 150 |
|
| 151 |
+
S1 --> U1[Limit Calculation Validation]
|
| 152 |
+
T1 --> V1[Limit Calculation Parameters]
|
| 153 |
+
U1 --> W1[Limit Calculation Output]
|
| 154 |
|
| 155 |
+
V1 --> X1[Limit Calculation Analysis]
|
| 156 |
+
W1 --> Y1[Limit Calculation Final Result]
|
| 157 |
+
X1 --> Z1[Limit Calculation Analysis Complete]
|
| 158 |
|
| 159 |
style A1 fill:#ff6b6b,color:#fff
|
| 160 |
style C1 fill:#ff6b6b,color:#fff
|
|
|
|
| 183 |
style X1 fill:#ffd43b,color:#000
|
| 184 |
style Y1 fill:#ffd43b,color:#000
|
| 185 |
style Z1 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
style M1 fill:#51cf66,color:#fff
|
| 188 |
style N1 fill:#51cf66,color:#fff
|
|
|
|
| 198 |
style X1 fill:#51cf66,color:#fff
|
| 199 |
style Y1 fill:#51cf66,color:#fff
|
| 200 |
style Z1 fill:#51cf66,color:#fff
|
| 201 |
+
|
| 202 |
+
style Z1 fill:#b197fc,color:#fff
|
| 203 |
+
</div>
|
| 204 |
+
|
| 205 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 206 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 207 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 208 |
+
</div>
|
| 209 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 210 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Limit Methods
|
|
|
|
| 211 |
</div>
|
| 212 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 213 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Limit Operations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
</div>
|
| 215 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 216 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
|
|
|
| 217 |
</div>
|
| 218 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 219 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 220 |
+
</div>
|
| 221 |
+
</div>
|
| 222 |
+
|
| 223 |
+
<div class="figure-caption">
|
| 224 |
+
<strong>Figure 1.</strong> Limit Calculation Process. This analysis process visualization demonstrates limit evaluation and convergence analysis. The flowchart shows function inputs and approach directions, limit methods and evaluation strategies, limit operations and comparisons, intermediate results, and final limit calculation outputs.
|
| 225 |
</div>
|
| 226 |
+
</div>
|
| 227 |
|
| 228 |
+
<h2>2. Derivative Calculation Process</h2>
|
| 229 |
+
<div class="figure">
|
| 230 |
+
<div class="mermaid">
|
|
|
|
| 231 |
graph TD
|
| 232 |
+
A2[Function f of x] --> B2[Differentiation Method]
|
| 233 |
+
C2[Point of Evaluation] --> D2[Derivative Analysis]
|
| 234 |
+
E2[Chain Rule] --> F2[Product Rule]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
B2 --> G2[Power Rule]
|
| 237 |
+
D2 --> H2[Quotient Rule]
|
| 238 |
+
F2 --> I2[Implicit Differentiation]
|
| 239 |
|
| 240 |
+
G2 --> J2[Constant Rule]
|
| 241 |
+
H2 --> K2[Trigonometric Derivatives]
|
| 242 |
+
I2 --> L2[Logarithmic Derivatives]
|
| 243 |
|
| 244 |
+
J2 --> M2[Sum Rule]
|
| 245 |
+
K2 --> L2
|
| 246 |
+
L2 --> N2[Exponential Derivatives]
|
| 247 |
|
| 248 |
+
M2 --> O2[Difference Rule]
|
| 249 |
+
N2 --> P2[Inverse Function Derivatives]
|
| 250 |
+
O2 --> Q2[Derivative Calculation Process]
|
| 251 |
|
| 252 |
+
P2 --> R2[Derivative Validation]
|
| 253 |
+
Q2 --> S2[Derivative Verification]
|
| 254 |
+
R2 --> T2[Derivative Calculation Result]
|
| 255 |
|
| 256 |
+
S2 --> U2[Derivative Calculation Validation]
|
| 257 |
+
T2 --> V2[Derivative Calculation Parameters]
|
| 258 |
+
U2 --> W2[Derivative Calculation Output]
|
| 259 |
|
| 260 |
+
V2 --> X2[Derivative Calculation Analysis]
|
| 261 |
+
W2 --> Y2[Derivative Calculation Final Result]
|
| 262 |
+
X2 --> Z2[Derivative Calculation Analysis Complete]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
style A2 fill:#ff6b6b,color:#fff
|
| 265 |
style C2 fill:#ff6b6b,color:#fff
|
|
|
|
| 288 |
style X2 fill:#ffd43b,color:#000
|
| 289 |
style Y2 fill:#ffd43b,color:#000
|
| 290 |
style Z2 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
style M2 fill:#51cf66,color:#fff
|
| 293 |
style N2 fill:#51cf66,color:#fff
|
|
|
|
| 303 |
style X2 fill:#51cf66,color:#fff
|
| 304 |
style Y2 fill:#51cf66,color:#fff
|
| 305 |
style Z2 fill:#51cf66,color:#fff
|
| 306 |
+
|
| 307 |
+
style Z2 fill:#b197fc,color:#fff
|
| 308 |
+
</div>
|
| 309 |
+
|
| 310 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 311 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 312 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 313 |
+
</div>
|
| 314 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 315 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Differentiation Methods
|
| 316 |
+
</div>
|
| 317 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 318 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Derivative Operations
|
| 319 |
</div>
|
| 320 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 321 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
</div>
|
| 323 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 324 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
|
|
|
| 325 |
</div>
|
| 326 |
</div>
|
| 327 |
+
|
| 328 |
+
<div class="figure-caption">
|
| 329 |
+
<strong>Figure 2.</strong> Derivative Calculation Process. This analysis process visualization demonstrates differentiation techniques and rate of change analysis. The flowchart shows function inputs and differentiation methods, differentiation methods and rules, derivative operations and calculations, intermediate results, and final derivative calculation outputs.
|
| 330 |
+
</div>
|
| 331 |
+
</div>
|
| 332 |
|
| 333 |
+
<h2>3. Integral Calculation Process</h2>
|
| 334 |
+
<div class="figure">
|
| 335 |
+
<div class="mermaid">
|
|
|
|
| 336 |
graph TD
|
| 337 |
+
A3[Function f of x] --> B3[Integration Method]
|
| 338 |
+
C3[Integration Limits] --> D3[Integral Analysis]
|
| 339 |
+
E3[Substitution Method] --> F3[Integration by Parts]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
+
B3 --> G3[Power Rule Integration]
|
| 342 |
+
D3 --> H3[Trigonometric Integration]
|
| 343 |
+
F3 --> I3[Partial Fractions]
|
| 344 |
|
| 345 |
+
G3 --> J3[Exponential Integration]
|
| 346 |
+
H3 --> I3
|
| 347 |
+
I3 --> K3[Logarithmic Integration]
|
| 348 |
|
| 349 |
+
J3 --> L3[Definite Integral]
|
| 350 |
+
K3 --> M3[Indefinite Integral]
|
| 351 |
+
L3 --> N3[Area Calculation]
|
| 352 |
|
| 353 |
+
M3 --> O3[Antiderivative]
|
| 354 |
+
N3 --> P3[Fundamental Theorem]
|
| 355 |
+
O3 --> Q3[Integral Calculation Process]
|
| 356 |
|
| 357 |
+
P3 --> R3[Integral Validation]
|
| 358 |
+
Q3 --> S3[Integral Verification]
|
| 359 |
+
R3 --> T3[Integral Calculation Result]
|
| 360 |
|
| 361 |
+
S3 --> U3[Integral Calculation Validation]
|
| 362 |
+
T3 --> V3[Integral Calculation Parameters]
|
| 363 |
+
U3 --> W3[Integral Calculation Output]
|
| 364 |
|
| 365 |
+
V3 --> X3[Integral Calculation Analysis]
|
| 366 |
+
W3 --> Y3[Integral Calculation Final Result]
|
| 367 |
+
X3 --> Z3[Integral Calculation Analysis Complete]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
style A3 fill:#ff6b6b,color:#fff
|
| 370 |
style C3 fill:#ff6b6b,color:#fff
|
|
|
|
| 393 |
style X3 fill:#ffd43b,color:#000
|
| 394 |
style Y3 fill:#ffd43b,color:#000
|
| 395 |
style Z3 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
style M3 fill:#51cf66,color:#fff
|
| 398 |
style N3 fill:#51cf66,color:#fff
|
|
|
|
| 408 |
style X3 fill:#51cf66,color:#fff
|
| 409 |
style Y3 fill:#51cf66,color:#fff
|
| 410 |
style Z3 fill:#51cf66,color:#fff
|
| 411 |
+
|
| 412 |
+
style Z3 fill:#b197fc,color:#fff
|
| 413 |
+
</div>
|
| 414 |
+
|
| 415 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 416 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 417 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
</div>
|
| 419 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 420 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Integration Methods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
</div>
|
| 422 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 423 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Integral Operations
|
|
|
|
| 424 |
</div>
|
| 425 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 426 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 427 |
+
</div>
|
| 428 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 429 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 430 |
+
</div>
|
| 431 |
+
</div>
|
| 432 |
+
|
| 433 |
+
<div class="figure-caption">
|
| 434 |
+
<strong>Figure 3.</strong> Integral Calculation Process. This analysis process visualization demonstrates integration techniques and area calculation. The flowchart shows function inputs and integration methods, integration methods and techniques, integral operations and calculations, intermediate results, and final integral calculation outputs.
|
| 435 |
</div>
|
| 436 |
+
</div>
|
| 437 |
|
| 438 |
+
<div class="navigation">
|
| 439 |
+
<h3>Navigation</h3>
|
| 440 |
<div class="nav-links">
|
| 441 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 442 |
<a href="mathematics_batch_01.html" class="nav-link">← Previous: Number Theory</a>
|
| 443 |
<a href="mathematics_batch_03.html" class="nav-link">Next: Abstract Algebra →</a>
|
| 444 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 445 |
</div>
|
| 446 |
+
</div>
|
| 447 |
|
| 448 |
+
<div class="footer">
|
| 449 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 450 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 451 |
<div class="contact-info">
|
|
|
|
| 456 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 457 |
<p>Email: [email protected]</p>
|
| 458 |
</div>
|
| 459 |
+
</div>
|
| 460 |
</div>
|
| 461 |
</body>
|
| 462 |
</html>
|
mathematics_batch_03.html
CHANGED
|
@@ -4,7 +4,97 @@
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 03 - Abstract Algebra - Programming Framework Analysis</title>
|
| 7 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 9 |
<script>
|
| 10 |
mermaid.initialize({
|
|
@@ -17,70 +107,54 @@
|
|
| 17 |
nodeSpacing: 30,
|
| 18 |
rankSpacing: 30,
|
| 19 |
padding: 10
|
|
|
|
|
|
|
|
|
|
| 20 |
}
|
| 21 |
});
|
| 22 |
</script>
|
| 23 |
</head>
|
| 24 |
<body>
|
| 25 |
<div class="container">
|
| 26 |
-
<
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
</header>
|
| 30 |
|
| 31 |
-
<
|
| 32 |
-
|
| 33 |
-
<
|
| 34 |
-
</section>
|
| 35 |
-
|
| 36 |
-
<section class="process">
|
| 37 |
-
<h2>1. Group Theory Operations Process</h2>
|
| 38 |
-
<div class="figure">
|
| 39 |
-
<div class="mermaid">
|
| 40 |
graph TD
|
| 41 |
-
A1[
|
| 42 |
-
C1[Group Axioms] --> D1[
|
| 43 |
-
E1[
|
| 44 |
-
|
| 45 |
-
B1 --> G1[Closure Property]
|
| 46 |
-
D1 --> H1[Associativity Check]
|
| 47 |
-
F1 --> I1[Identity Element]
|
| 48 |
-
|
| 49 |
-
G1 --> J1[Operation Table Construction]
|
| 50 |
-
H1 --> K1[Associative Law Verification]
|
| 51 |
-
I1 --> L1[Identity Element e]
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
EE1 --> HH1[Group Theory Analysis]
|
| 82 |
-
FF1 --> GG1
|
| 83 |
-
GG1 --> II1[Group Theory Output]
|
| 84 |
|
| 85 |
style A1 fill:#ff6b6b,color:#fff
|
| 86 |
style C1 fill:#ff6b6b,color:#fff
|
|
@@ -109,15 +183,6 @@ graph TD
|
|
| 109 |
style X1 fill:#ffd43b,color:#000
|
| 110 |
style Y1 fill:#ffd43b,color:#000
|
| 111 |
style Z1 fill:#ffd43b,color:#000
|
| 112 |
-
style AA1 fill:#ffd43b,color:#000
|
| 113 |
-
style BB1 fill:#ffd43b,color:#000
|
| 114 |
-
style CC1 fill:#ffd43b,color:#000
|
| 115 |
-
style DD1 fill:#ffd43b,color:#000
|
| 116 |
-
style EE1 fill:#ffd43b,color:#000
|
| 117 |
-
style FF1 fill:#ffd43b,color:#000
|
| 118 |
-
style GG1 fill:#ffd43b,color:#000
|
| 119 |
-
style HH1 fill:#ffd43b,color:#000
|
| 120 |
-
style II1 fill:#ffd43b,color:#000
|
| 121 |
|
| 122 |
style M1 fill:#51cf66,color:#fff
|
| 123 |
style N1 fill:#51cf66,color:#fff
|
|
@@ -133,91 +198,68 @@ graph TD
|
|
| 133 |
style X1 fill:#51cf66,color:#fff
|
| 134 |
style Y1 fill:#51cf66,color:#fff
|
| 135 |
style Z1 fill:#51cf66,color:#fff
|
| 136 |
-
|
| 137 |
-
style
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
style HH1 fill:#51cf66,color:#fff
|
| 144 |
-
style II1 fill:#51cf66,color:#fff
|
| 145 |
-
|
| 146 |
-
style II1 fill:#b197fc,color:#fff
|
| 147 |
</div>
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 151 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 152 |
-
</div>
|
| 153 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 154 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Group Theory Methods
|
| 155 |
-
</div>
|
| 156 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 157 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Group Operations
|
| 158 |
-
</div>
|
| 159 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 160 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 161 |
-
</div>
|
| 162 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 163 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 164 |
-
</div>
|
| 165 |
</div>
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
<strong>Figure 1.</strong> Group Theory Operations Process. This abstract algebra process visualization demonstrates group properties and operations. The flowchart shows group elements and axioms, group theory methods and algorithms, group operations and verifications, intermediate results, and final group theory analysis.
|
| 169 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
</div>
|
| 171 |
-
</
|
| 172 |
|
| 173 |
-
<
|
| 174 |
-
|
| 175 |
-
<div class="
|
| 176 |
-
<div class="mermaid">
|
| 177 |
graph TD
|
| 178 |
-
A2[
|
| 179 |
-
C2[Ring Axioms] --> D2[
|
| 180 |
-
E2[
|
| 181 |
-
|
| 182 |
-
B2 --> G2[Addition Operation]
|
| 183 |
-
D2 --> H2[Additive Group Properties]
|
| 184 |
-
F2 --> I2[Multiplication Operation]
|
| 185 |
-
|
| 186 |
-
G2 --> J2[Additive Identity Zero]
|
| 187 |
-
H2 --> K2[Additive Inverses]
|
| 188 |
-
I2 --> L2[Multiplicative Identity One]
|
| 189 |
-
|
| 190 |
-
J2 --> M2[Additive Commutativity]
|
| 191 |
-
K2 --> N2[Additive Associativity]
|
| 192 |
-
L2 --> O2[Multiplicative Associativity]
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
|
| 222 |
style A2 fill:#ff6b6b,color:#fff
|
| 223 |
style C2 fill:#ff6b6b,color:#fff
|
|
@@ -246,15 +288,6 @@ graph TD
|
|
| 246 |
style X2 fill:#ffd43b,color:#000
|
| 247 |
style Y2 fill:#ffd43b,color:#000
|
| 248 |
style Z2 fill:#ffd43b,color:#000
|
| 249 |
-
style AA2 fill:#ffd43b,color:#000
|
| 250 |
-
style BB2 fill:#ffd43b,color:#000
|
| 251 |
-
style CC2 fill:#ffd43b,color:#000
|
| 252 |
-
style DD2 fill:#ffd43b,color:#000
|
| 253 |
-
style EE2 fill:#ffd43b,color:#000
|
| 254 |
-
style FF2 fill:#ffd43b,color:#000
|
| 255 |
-
style GG2 fill:#ffd43b,color:#000
|
| 256 |
-
style HH2 fill:#ffd43b,color:#000
|
| 257 |
-
style II2 fill:#ffd43b,color:#000
|
| 258 |
|
| 259 |
style M2 fill:#51cf66,color:#fff
|
| 260 |
style N2 fill:#51cf66,color:#fff
|
|
@@ -270,87 +303,68 @@ graph TD
|
|
| 270 |
style X2 fill:#51cf66,color:#fff
|
| 271 |
style Y2 fill:#51cf66,color:#fff
|
| 272 |
style Z2 fill:#51cf66,color:#fff
|
| 273 |
-
|
| 274 |
-
style
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
style II2 fill:#b197fc,color:#fff
|
| 284 |
</div>
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 288 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 289 |
-
</div>
|
| 290 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 291 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Ring Theory Methods
|
| 292 |
-
</div>
|
| 293 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 294 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Ring Operations
|
| 295 |
-
</div>
|
| 296 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 297 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 298 |
-
</div>
|
| 299 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 300 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 301 |
-
</div>
|
| 302 |
</div>
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
<strong>Figure 2.</strong> Ring Theory Processes. This abstract algebra process visualization demonstrates ring operations and properties. The flowchart shows ring elements and axioms, ring theory methods and algorithms, ring operations and verifications, intermediate results, and final ring theory analysis.
|
| 306 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
</div>
|
| 308 |
-
</
|
| 309 |
|
| 310 |
-
<
|
| 311 |
-
|
| 312 |
-
<div class="
|
| 313 |
-
<div class="mermaid">
|
| 314 |
graph TD
|
| 315 |
-
A3[
|
| 316 |
-
C3[
|
| 317 |
-
E3[
|
| 318 |
-
|
| 319 |
-
B3 --> G3[Extension Field E]
|
| 320 |
-
D3 --> H3[Degree of Extension]
|
| 321 |
-
F3 --> I3[Algebraic Elements]
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
BB3 --> DD3[Field Theory Analysis]
|
| 352 |
-
CC3 --> EE3[Field Theory Output]
|
| 353 |
-
DD3 --> FF3[Field Theory Final Result]
|
| 354 |
|
| 355 |
style A3 fill:#ff6b6b,color:#fff
|
| 356 |
style C3 fill:#ff6b6b,color:#fff
|
|
@@ -379,12 +393,6 @@ graph TD
|
|
| 379 |
style X3 fill:#ffd43b,color:#000
|
| 380 |
style Y3 fill:#ffd43b,color:#000
|
| 381 |
style Z3 fill:#ffd43b,color:#000
|
| 382 |
-
style AA3 fill:#ffd43b,color:#000
|
| 383 |
-
style BB3 fill:#ffd43b,color:#000
|
| 384 |
-
style CC3 fill:#ffd43b,color:#000
|
| 385 |
-
style DD3 fill:#ffd43b,color:#000
|
| 386 |
-
style EE3 fill:#ffd43b,color:#000
|
| 387 |
-
style FF3 fill:#ffd43b,color:#000
|
| 388 |
|
| 389 |
style M3 fill:#51cf66,color:#fff
|
| 390 |
style N3 fill:#51cf66,color:#fff
|
|
@@ -400,51 +408,44 @@ graph TD
|
|
| 400 |
style X3 fill:#51cf66,color:#fff
|
| 401 |
style Y3 fill:#51cf66,color:#fff
|
| 402 |
style Z3 fill:#51cf66,color:#fff
|
| 403 |
-
|
| 404 |
-
style
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
style FF3 fill:#b197fc,color:#fff
|
| 411 |
</div>
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 415 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 416 |
-
</div>
|
| 417 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 418 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Field Theory Methods
|
| 419 |
-
</div>
|
| 420 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 421 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Extension Operations
|
| 422 |
-
</div>
|
| 423 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 424 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 425 |
-
</div>
|
| 426 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 427 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 428 |
-
</div>
|
| 429 |
</div>
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
<strong>Figure 3.</strong> Field Theory Extensions Process. This abstract algebra process visualization demonstrates field extensions and Galois theory. The flowchart shows base field and extension elements, field theory methods and algorithms, extension operations and calculations, intermediate results, and final field theory analysis.
|
| 433 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
</div>
|
| 435 |
-
</
|
| 436 |
|
| 437 |
-
<
|
| 438 |
-
<
|
| 439 |
<div class="nav-links">
|
| 440 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 441 |
<a href="mathematics_batch_02.html" class="nav-link">← Previous: Analysis & Calculus</a>
|
| 442 |
<a href="mathematics_batch_04.html" class="nav-link">Next: Geometry & Topology →</a>
|
| 443 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 444 |
</div>
|
| 445 |
-
</
|
| 446 |
|
| 447 |
-
<footer>
|
| 448 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 449 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 450 |
<div class="contact-info">
|
|
@@ -455,7 +456,7 @@ graph TD
|
|
| 455 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 456 |
<p>Email: [email protected]</p>
|
| 457 |
</div>
|
| 458 |
-
</
|
| 459 |
</div>
|
| 460 |
</body>
|
| 461 |
</html>
|
|
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 03 - Abstract Algebra - Programming Framework Analysis</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Times New Roman', Times, serif, 'Arial Unicode MS';
|
| 10 |
+
margin: 0;
|
| 11 |
+
background: #ffffff;
|
| 12 |
+
color: #000000;
|
| 13 |
+
line-height: 1.6;
|
| 14 |
+
font-size: 12pt;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 1000px;
|
| 18 |
+
margin: 0 auto;
|
| 19 |
+
padding: 1.5rem;
|
| 20 |
+
}
|
| 21 |
+
h1, h2, h3 {
|
| 22 |
+
color: #000000;
|
| 23 |
+
margin-top: 1.5rem;
|
| 24 |
+
margin-bottom: 0.75rem;
|
| 25 |
+
}
|
| 26 |
+
h1 {
|
| 27 |
+
font-size: 18pt;
|
| 28 |
+
text-align: center;
|
| 29 |
+
}
|
| 30 |
+
h2 {
|
| 31 |
+
font-size: 16pt;
|
| 32 |
+
border-bottom: 2px solid #000;
|
| 33 |
+
padding-bottom: 0.5rem;
|
| 34 |
+
}
|
| 35 |
+
h3 {
|
| 36 |
+
font-size: 14pt;
|
| 37 |
+
}
|
| 38 |
+
p {
|
| 39 |
+
margin-bottom: 1rem;
|
| 40 |
+
text-align: justify;
|
| 41 |
+
}
|
| 42 |
+
.figure {
|
| 43 |
+
margin: 2rem 0;
|
| 44 |
+
text-align: center;
|
| 45 |
+
border: 1px solid #ccc;
|
| 46 |
+
padding: 1rem;
|
| 47 |
+
background: #f9f9f9;
|
| 48 |
+
}
|
| 49 |
+
.figure-caption {
|
| 50 |
+
margin-top: 1rem;
|
| 51 |
+
font-style: italic;
|
| 52 |
+
text-align: left;
|
| 53 |
+
}
|
| 54 |
+
.mermaid {
|
| 55 |
+
background: white;
|
| 56 |
+
padding: 1rem;
|
| 57 |
+
border-radius: 4px;
|
| 58 |
+
}
|
| 59 |
+
.navigation {
|
| 60 |
+
margin: 3rem 0;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
background: #f8f9fa;
|
| 63 |
+
border-radius: 8px;
|
| 64 |
+
}
|
| 65 |
+
.nav-links {
|
| 66 |
+
display: flex;
|
| 67 |
+
flex-wrap: wrap;
|
| 68 |
+
gap: 1rem;
|
| 69 |
+
justify-content: center;
|
| 70 |
+
}
|
| 71 |
+
.nav-link {
|
| 72 |
+
color: #007bff;
|
| 73 |
+
text-decoration: none;
|
| 74 |
+
padding: 0.5rem 1rem;
|
| 75 |
+
border: 1px solid #007bff;
|
| 76 |
+
border-radius: 4px;
|
| 77 |
+
transition: all 0.3s ease;
|
| 78 |
+
}
|
| 79 |
+
.nav-link:hover {
|
| 80 |
+
background: #007bff;
|
| 81 |
+
color: white;
|
| 82 |
+
}
|
| 83 |
+
.footer {
|
| 84 |
+
margin-top: 3rem;
|
| 85 |
+
padding: 1rem;
|
| 86 |
+
background: #f8f9fa;
|
| 87 |
+
border-radius: 8px;
|
| 88 |
+
text-align: center;
|
| 89 |
+
}
|
| 90 |
+
.contact-info {
|
| 91 |
+
margin-top: 1rem;
|
| 92 |
+
}
|
| 93 |
+
.contact-info p {
|
| 94 |
+
margin: 0.25rem 0;
|
| 95 |
+
text-align: center;
|
| 96 |
+
}
|
| 97 |
+
</style>
|
| 98 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 99 |
<script>
|
| 100 |
mermaid.initialize({
|
|
|
|
| 107 |
nodeSpacing: 30,
|
| 108 |
rankSpacing: 30,
|
| 109 |
padding: 10
|
| 110 |
+
},
|
| 111 |
+
themeVariables: {
|
| 112 |
+
fontFamily: 'Arial Unicode MS, Arial, sans-serif'
|
| 113 |
}
|
| 114 |
});
|
| 115 |
</script>
|
| 116 |
</head>
|
| 117 |
<body>
|
| 118 |
<div class="container">
|
| 119 |
+
<h1>Mathematics Batch 03 - Abstract Algebra - Programming Framework Analysis</h1>
|
| 120 |
+
|
| 121 |
+
<p>This document presents abstract algebra processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.</p>
|
|
|
|
| 122 |
|
| 123 |
+
<h2>1. Group Theory Process</h2>
|
| 124 |
+
<div class="figure">
|
| 125 |
+
<div class="mermaid">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
graph TD
|
| 127 |
+
A1[Set G] --> B1[Binary Operation]
|
| 128 |
+
C1[Group Axioms] --> D1[Closure Property]
|
| 129 |
+
E1[Associativity] --> F1[Identity Element]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
B1 --> G1[Inverse Elements]
|
| 132 |
+
D1 --> H1[Group Verification]
|
| 133 |
+
F1 --> I1[Group Structure]
|
| 134 |
|
| 135 |
+
G1 --> J1[Subgroup Analysis]
|
| 136 |
+
H1 --> K1[Order of Group]
|
| 137 |
+
I1 --> L1[Group Properties]
|
| 138 |
|
| 139 |
+
J1 --> M1[Cyclic Groups]
|
| 140 |
+
K1 --> L1
|
| 141 |
+
L1 --> N1[Abelian Groups]
|
| 142 |
|
| 143 |
+
M1 --> O1[Group Homomorphisms]
|
| 144 |
+
N1 --> P1[Group Isomorphisms]
|
| 145 |
+
O1 --> Q1[Group Theory Process]
|
| 146 |
|
| 147 |
+
P1 --> R1[Group Theory Validation]
|
| 148 |
+
Q1 --> S1[Group Theory Verification]
|
| 149 |
+
R1 --> T1[Group Theory Result]
|
| 150 |
|
| 151 |
+
S1 --> U1[Group Theory Analysis]
|
| 152 |
+
T1 --> V1[Group Theory Parameters]
|
| 153 |
+
U1 --> W1[Group Theory Output]
|
| 154 |
|
| 155 |
+
V1 --> X1[Group Theory Analysis]
|
| 156 |
+
W1 --> Y1[Group Theory Final Result]
|
| 157 |
+
X1 --> Z1[Group Theory Analysis Complete]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
style A1 fill:#ff6b6b,color:#fff
|
| 160 |
style C1 fill:#ff6b6b,color:#fff
|
|
|
|
| 183 |
style X1 fill:#ffd43b,color:#000
|
| 184 |
style Y1 fill:#ffd43b,color:#000
|
| 185 |
style Z1 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
style M1 fill:#51cf66,color:#fff
|
| 188 |
style N1 fill:#51cf66,color:#fff
|
|
|
|
| 198 |
style X1 fill:#51cf66,color:#fff
|
| 199 |
style Y1 fill:#51cf66,color:#fff
|
| 200 |
style Z1 fill:#51cf66,color:#fff
|
| 201 |
+
|
| 202 |
+
style Z1 fill:#b197fc,color:#fff
|
| 203 |
+
</div>
|
| 204 |
+
|
| 205 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 206 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 207 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
</div>
|
| 209 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 210 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Group Methods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
</div>
|
| 212 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 213 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Group Operations
|
|
|
|
| 214 |
</div>
|
| 215 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 216 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 217 |
+
</div>
|
| 218 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 219 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 220 |
+
</div>
|
| 221 |
+
</div>
|
| 222 |
+
|
| 223 |
+
<div class="figure-caption">
|
| 224 |
+
<strong>Figure 1.</strong> Group Theory Process. This abstract algebra process visualization demonstrates group structure analysis and verification. The flowchart shows set inputs and binary operations, group methods and axioms, group operations and properties, intermediate results, and final group theory outputs.
|
| 225 |
</div>
|
| 226 |
+
</div>
|
| 227 |
|
| 228 |
+
<h2>2. Ring Theory Process</h2>
|
| 229 |
+
<div class="figure">
|
| 230 |
+
<div class="mermaid">
|
|
|
|
| 231 |
graph TD
|
| 232 |
+
A2[Set R] --> B2[Two Binary Operations]
|
| 233 |
+
C2[Ring Axioms] --> D2[Additive Group]
|
| 234 |
+
E2[Multiplicative Semigroup] --> F2[Distributive Laws]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
B2 --> G2[Ring Verification]
|
| 237 |
+
D2 --> H2[Commutative Ring]
|
| 238 |
+
F2 --> I2[Ring with Unity]
|
| 239 |
|
| 240 |
+
G2 --> J2[Integral Domain]
|
| 241 |
+
H2 --> K2[Field Analysis]
|
| 242 |
+
I2 --> L2[Division Ring]
|
| 243 |
|
| 244 |
+
J2 --> M2[Ring Homomorphisms]
|
| 245 |
+
K2 --> L2
|
| 246 |
+
L2 --> N2[Ring Isomorphisms]
|
| 247 |
|
| 248 |
+
M2 --> O2[Ideals Analysis]
|
| 249 |
+
N2 --> P2[Quotient Rings]
|
| 250 |
+
O2 --> Q2[Ring Theory Process]
|
| 251 |
|
| 252 |
+
P2 --> R2[Ring Theory Validation]
|
| 253 |
+
Q2 --> S2[Ring Theory Verification]
|
| 254 |
+
R2 --> T2[Ring Theory Result]
|
| 255 |
|
| 256 |
+
S2 --> U2[Ring Theory Analysis]
|
| 257 |
+
T2 --> V2[Ring Theory Parameters]
|
| 258 |
+
U2 --> W2[Ring Theory Output]
|
| 259 |
|
| 260 |
+
V2 --> X2[Ring Theory Analysis]
|
| 261 |
+
W2 --> Y2[Ring Theory Final Result]
|
| 262 |
+
X2 --> Z2[Ring Theory Analysis Complete]
|
| 263 |
|
| 264 |
style A2 fill:#ff6b6b,color:#fff
|
| 265 |
style C2 fill:#ff6b6b,color:#fff
|
|
|
|
| 288 |
style X2 fill:#ffd43b,color:#000
|
| 289 |
style Y2 fill:#ffd43b,color:#000
|
| 290 |
style Z2 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
style M2 fill:#51cf66,color:#fff
|
| 293 |
style N2 fill:#51cf66,color:#fff
|
|
|
|
| 303 |
style X2 fill:#51cf66,color:#fff
|
| 304 |
style Y2 fill:#51cf66,color:#fff
|
| 305 |
style Z2 fill:#51cf66,color:#fff
|
| 306 |
+
|
| 307 |
+
style Z2 fill:#b197fc,color:#fff
|
| 308 |
+
</div>
|
| 309 |
+
|
| 310 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 311 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 312 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 313 |
+
</div>
|
| 314 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 315 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Ring Methods
|
|
|
|
| 316 |
</div>
|
| 317 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 318 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Ring Operations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
</div>
|
| 320 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 321 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
|
|
|
| 322 |
</div>
|
| 323 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 324 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 325 |
+
</div>
|
| 326 |
+
</div>
|
| 327 |
+
|
| 328 |
+
<div class="figure-caption">
|
| 329 |
+
<strong>Figure 2.</strong> Ring Theory Process. This abstract algebra process visualization demonstrates ring structure analysis and verification. The flowchart shows set inputs and binary operations, ring methods and axioms, ring operations and properties, intermediate results, and final ring theory outputs.
|
| 330 |
</div>
|
| 331 |
+
</div>
|
| 332 |
|
| 333 |
+
<h2>3. Field Theory Process</h2>
|
| 334 |
+
<div class="figure">
|
| 335 |
+
<div class="mermaid">
|
|
|
|
| 336 |
graph TD
|
| 337 |
+
A3[Set F] --> B3[Field Axioms]
|
| 338 |
+
C3[Additive Group] --> D3[Multiplicative Group]
|
| 339 |
+
E3[Distributive Laws] --> F3[Field Verification]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
+
B3 --> G3[Commutative Field]
|
| 342 |
+
D3 --> H3[Field Extensions]
|
| 343 |
+
F3 --> I3[Algebraic Extensions]
|
| 344 |
|
| 345 |
+
G3 --> J3[Transcendental Extensions]
|
| 346 |
+
H3 --> K3[Finite Fields]
|
| 347 |
+
I3 --> L3[Galois Theory]
|
| 348 |
|
| 349 |
+
J3 --> M3[Field Homomorphisms]
|
| 350 |
+
K3 --> L3
|
| 351 |
+
L3 --> N3[Field Isomorphisms]
|
| 352 |
|
| 353 |
+
M3 --> O3[Field Theory Analysis]
|
| 354 |
+
N3 --> P3[Field Theory Validation]
|
| 355 |
+
O3 --> Q3[Field Theory Process]
|
| 356 |
|
| 357 |
+
P3 --> R3[Field Theory Verification]
|
| 358 |
+
Q3 --> S3[Field Theory Result]
|
| 359 |
+
R3 --> T3[Field Theory Output]
|
| 360 |
|
| 361 |
+
S3 --> U3[Field Theory Analysis]
|
| 362 |
+
T3 --> V3[Field Theory Parameters]
|
| 363 |
+
U3 --> W3[Field Theory Final Result]
|
| 364 |
|
| 365 |
+
V3 --> X3[Field Theory Analysis]
|
| 366 |
+
W3 --> Y3[Field Theory Analysis Complete]
|
| 367 |
+
X3 --> Z3[Field Theory Analysis Complete]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
style A3 fill:#ff6b6b,color:#fff
|
| 370 |
style C3 fill:#ff6b6b,color:#fff
|
|
|
|
| 393 |
style X3 fill:#ffd43b,color:#000
|
| 394 |
style Y3 fill:#ffd43b,color:#000
|
| 395 |
style Z3 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
style M3 fill:#51cf66,color:#fff
|
| 398 |
style N3 fill:#51cf66,color:#fff
|
|
|
|
| 408 |
style X3 fill:#51cf66,color:#fff
|
| 409 |
style Y3 fill:#51cf66,color:#fff
|
| 410 |
style Z3 fill:#51cf66,color:#fff
|
| 411 |
+
|
| 412 |
+
style Z3 fill:#b197fc,color:#fff
|
| 413 |
+
</div>
|
| 414 |
+
|
| 415 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 416 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 417 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
|
|
|
| 418 |
</div>
|
| 419 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 420 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Field Methods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
</div>
|
| 422 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 423 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Field Operations
|
|
|
|
| 424 |
</div>
|
| 425 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 426 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 427 |
+
</div>
|
| 428 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 429 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 430 |
+
</div>
|
| 431 |
+
</div>
|
| 432 |
+
|
| 433 |
+
<div class="figure-caption">
|
| 434 |
+
<strong>Figure 3.</strong> Field Theory Process. This abstract algebra process visualization demonstrates field structure analysis and verification. The flowchart shows set inputs and field axioms, field methods and properties, field operations and extensions, intermediate results, and final field theory outputs.
|
| 435 |
</div>
|
| 436 |
+
</div>
|
| 437 |
|
| 438 |
+
<div class="navigation">
|
| 439 |
+
<h3>Navigation</h3>
|
| 440 |
<div class="nav-links">
|
| 441 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 442 |
<a href="mathematics_batch_02.html" class="nav-link">← Previous: Analysis & Calculus</a>
|
| 443 |
<a href="mathematics_batch_04.html" class="nav-link">Next: Geometry & Topology →</a>
|
| 444 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 445 |
</div>
|
| 446 |
+
</div>
|
| 447 |
|
| 448 |
+
<div class="footer">
|
| 449 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 450 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 451 |
<div class="contact-info">
|
|
|
|
| 456 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 457 |
<p>Email: [email protected]</p>
|
| 458 |
</div>
|
| 459 |
+
</div>
|
| 460 |
</div>
|
| 461 |
</body>
|
| 462 |
</html>
|
mathematics_batch_04.html
CHANGED
|
@@ -4,7 +4,97 @@
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 04 - Geometry & Topology - Programming Framework Analysis</title>
|
| 7 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 9 |
<script>
|
| 10 |
mermaid.initialize({
|
|
@@ -17,62 +107,54 @@
|
|
| 17 |
nodeSpacing: 30,
|
| 18 |
rankSpacing: 30,
|
| 19 |
padding: 10
|
|
|
|
|
|
|
|
|
|
| 20 |
}
|
| 21 |
});
|
| 22 |
</script>
|
| 23 |
</head>
|
| 24 |
<body>
|
| 25 |
<div class="container">
|
| 26 |
-
<
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
</header>
|
| 30 |
|
| 31 |
-
<
|
| 32 |
-
|
| 33 |
-
<
|
| 34 |
-
</section>
|
| 35 |
-
|
| 36 |
-
<section class="process">
|
| 37 |
-
<h2>1. Geometric Constructions Process</h2>
|
| 38 |
-
<div class="figure">
|
| 39 |
-
<div class="mermaid">
|
| 40 |
graph TD
|
| 41 |
-
A1[Geometric
|
| 42 |
-
C1[
|
| 43 |
-
E1[
|
| 44 |
-
|
| 45 |
-
B1 --> G1[Compass and Straightedge]
|
| 46 |
-
D1 --> H1[Postulate Application]
|
| 47 |
-
F1 --> I1[Construction Algorithm]
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
style A1 fill:#ff6b6b,color:#fff
|
| 78 |
style C1 fill:#ff6b6b,color:#fff
|
|
@@ -101,10 +183,6 @@ graph TD
|
|
| 101 |
style X1 fill:#ffd43b,color:#000
|
| 102 |
style Y1 fill:#ffd43b,color:#000
|
| 103 |
style Z1 fill:#ffd43b,color:#000
|
| 104 |
-
style AA1 fill:#ffd43b,color:#000
|
| 105 |
-
style BB1 fill:#ffd43b,color:#000
|
| 106 |
-
style CC1 fill:#ffd43b,color:#000
|
| 107 |
-
style DD1 fill:#ffd43b,color:#000
|
| 108 |
|
| 109 |
style M1 fill:#51cf66,color:#fff
|
| 110 |
style N1 fill:#51cf66,color:#fff
|
|
@@ -120,78 +198,68 @@ graph TD
|
|
| 120 |
style X1 fill:#51cf66,color:#fff
|
| 121 |
style Y1 fill:#51cf66,color:#fff
|
| 122 |
style Z1 fill:#51cf66,color:#fff
|
| 123 |
-
style AA1 fill:#51cf66,color:#fff
|
| 124 |
-
style BB1 fill:#51cf66,color:#fff
|
| 125 |
-
style CC1 fill:#51cf66,color:#fff
|
| 126 |
-
style DD1 fill:#51cf66,color:#fff
|
| 127 |
|
| 128 |
-
style
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
</div>
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 133 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 134 |
-
</div>
|
| 135 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 136 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Geometric Methods
|
| 137 |
-
</div>
|
| 138 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 139 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Construction Operations
|
| 140 |
-
</div>
|
| 141 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 142 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 143 |
-
</div>
|
| 144 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 145 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 146 |
-
</div>
|
| 147 |
</div>
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
<strong>Figure 1.</strong> Geometric Constructions Process. This geometry process visualization demonstrates compass and straightedge constructions. The flowchart shows geometric problem inputs and axioms, geometric methods and algorithms, construction operations and verifications, intermediate results, and final geometric construction outputs.
|
| 151 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
</div>
|
| 153 |
-
</
|
| 154 |
|
| 155 |
-
<
|
| 156 |
-
|
| 157 |
-
<div class="
|
| 158 |
-
<div class="mermaid">
|
| 159 |
graph TD
|
| 160 |
-
A2[Topological Space
|
| 161 |
-
C2[
|
| 162 |
-
E2[
|
| 163 |
|
| 164 |
-
B2 --> G2[
|
| 165 |
-
D2 --> H2[
|
| 166 |
-
F2 --> I2[
|
| 167 |
|
| 168 |
-
G2 --> J2[
|
| 169 |
-
H2 --> K2[
|
| 170 |
-
I2 --> L2[
|
| 171 |
|
| 172 |
-
J2 --> M2[
|
| 173 |
-
K2 -->
|
| 174 |
-
L2 -->
|
| 175 |
|
| 176 |
-
M2 -->
|
| 177 |
-
N2 -->
|
| 178 |
-
O2 -->
|
| 179 |
|
| 180 |
-
P2 -->
|
| 181 |
-
Q2 -->
|
| 182 |
-
R2 -->
|
| 183 |
|
| 184 |
-
S2 -->
|
| 185 |
-
T2 -->
|
| 186 |
-
U2 -->
|
| 187 |
|
| 188 |
-
V2 -->
|
| 189 |
-
W2 -->
|
| 190 |
-
X2 -->
|
| 191 |
-
|
| 192 |
-
Y2 --> BB2[Transformation Validation]
|
| 193 |
-
Z2 --> CC2[Topological Result]
|
| 194 |
-
AA2 --> DD2[Topological Transformation Output]
|
| 195 |
|
| 196 |
style A2 fill:#ff6b6b,color:#fff
|
| 197 |
style C2 fill:#ff6b6b,color:#fff
|
|
@@ -220,10 +288,6 @@ graph TD
|
|
| 220 |
style X2 fill:#ffd43b,color:#000
|
| 221 |
style Y2 fill:#ffd43b,color:#000
|
| 222 |
style Z2 fill:#ffd43b,color:#000
|
| 223 |
-
style AA2 fill:#ffd43b,color:#000
|
| 224 |
-
style BB2 fill:#ffd43b,color:#000
|
| 225 |
-
style CC2 fill:#ffd43b,color:#000
|
| 226 |
-
style DD2 fill:#ffd43b,color:#000
|
| 227 |
|
| 228 |
style M2 fill:#51cf66,color:#fff
|
| 229 |
style N2 fill:#51cf66,color:#fff
|
|
@@ -239,78 +303,68 @@ graph TD
|
|
| 239 |
style X2 fill:#51cf66,color:#fff
|
| 240 |
style Y2 fill:#51cf66,color:#fff
|
| 241 |
style Z2 fill:#51cf66,color:#fff
|
| 242 |
-
style AA2 fill:#51cf66,color:#fff
|
| 243 |
-
style BB2 fill:#51cf66,color:#fff
|
| 244 |
-
style CC2 fill:#51cf66,color:#fff
|
| 245 |
-
style DD2 fill:#51cf66,color:#fff
|
| 246 |
|
| 247 |
-
style
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
</div>
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 252 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 253 |
-
</div>
|
| 254 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 255 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Topological Methods
|
| 256 |
-
</div>
|
| 257 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 258 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Transformation Operations
|
| 259 |
-
</div>
|
| 260 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 261 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 262 |
-
</div>
|
| 263 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 264 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 265 |
-
</div>
|
| 266 |
</div>
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
</div>
|
| 271 |
</div>
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
-
<
|
| 275 |
-
|
| 276 |
-
<div class="
|
| 277 |
-
<div class="mermaid">
|
| 278 |
graph TD
|
| 279 |
-
A3[Manifold
|
| 280 |
-
C3[
|
| 281 |
-
E3[
|
| 282 |
-
|
| 283 |
-
B3 --> G3[Coordinate Charts]
|
| 284 |
-
D3 --> H3[Tangent Bundle TM]
|
| 285 |
-
F3 --> I3[Riemannian Metric]
|
| 286 |
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
|
| 315 |
style A3 fill:#ff6b6b,color:#fff
|
| 316 |
style C3 fill:#ff6b6b,color:#fff
|
|
@@ -339,9 +393,6 @@ graph TD
|
|
| 339 |
style X3 fill:#ffd43b,color:#000
|
| 340 |
style Y3 fill:#ffd43b,color:#000
|
| 341 |
style Z3 fill:#ffd43b,color:#000
|
| 342 |
-
style AA3 fill:#ffd43b,color:#000
|
| 343 |
-
style BB3 fill:#ffd43b,color:#000
|
| 344 |
-
style CC3 fill:#ffd43b,color:#000
|
| 345 |
|
| 346 |
style M3 fill:#51cf66,color:#fff
|
| 347 |
style N3 fill:#51cf66,color:#fff
|
|
@@ -357,48 +408,44 @@ graph TD
|
|
| 357 |
style X3 fill:#51cf66,color:#fff
|
| 358 |
style Y3 fill:#51cf66,color:#fff
|
| 359 |
style Z3 fill:#51cf66,color:#fff
|
| 360 |
-
style AA3 fill:#51cf66,color:#fff
|
| 361 |
-
style BB3 fill:#51cf66,color:#fff
|
| 362 |
-
style CC3 fill:#51cf66,color:#fff
|
| 363 |
|
| 364 |
-
style
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
</div>
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 369 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 370 |
-
</div>
|
| 371 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 372 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Manifold Methods
|
| 373 |
-
</div>
|
| 374 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 375 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Analysis Operations
|
| 376 |
-
</div>
|
| 377 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 378 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 379 |
-
</div>
|
| 380 |
-
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 381 |
-
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 382 |
-
</div>
|
| 383 |
</div>
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
<strong>Figure 3.</strong> Manifold Analysis Process. This differential geometry process visualization demonstrates manifold analysis and curvature calculations. The flowchart shows manifold inputs and differential structures, manifold methods and algorithms, analysis operations and calculations, intermediate results, and final manifold analysis outputs.
|
| 387 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
</div>
|
| 389 |
-
</
|
| 390 |
|
| 391 |
-
<
|
| 392 |
-
<
|
| 393 |
<div class="nav-links">
|
| 394 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 395 |
<a href="mathematics_batch_03.html" class="nav-link">← Previous: Abstract Algebra</a>
|
| 396 |
<a href="mathematics_batch_05.html" class="nav-link">Next: Applied Mathematics →</a>
|
| 397 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 398 |
</div>
|
| 399 |
-
</
|
| 400 |
|
| 401 |
-
<footer>
|
| 402 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 403 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 404 |
<div class="contact-info">
|
|
@@ -409,7 +456,7 @@ graph TD
|
|
| 409 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 410 |
<p>Email: [email protected]</p>
|
| 411 |
</div>
|
| 412 |
-
</
|
| 413 |
</div>
|
| 414 |
</body>
|
| 415 |
</html>
|
|
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 04 - Geometry & Topology - Programming Framework Analysis</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Times New Roman', Times, serif, 'Arial Unicode MS';
|
| 10 |
+
margin: 0;
|
| 11 |
+
background: #ffffff;
|
| 12 |
+
color: #000000;
|
| 13 |
+
line-height: 1.6;
|
| 14 |
+
font-size: 12pt;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 1000px;
|
| 18 |
+
margin: 0 auto;
|
| 19 |
+
padding: 1.5rem;
|
| 20 |
+
}
|
| 21 |
+
h1, h2, h3 {
|
| 22 |
+
color: #000000;
|
| 23 |
+
margin-top: 1.5rem;
|
| 24 |
+
margin-bottom: 0.75rem;
|
| 25 |
+
}
|
| 26 |
+
h1 {
|
| 27 |
+
font-size: 18pt;
|
| 28 |
+
text-align: center;
|
| 29 |
+
}
|
| 30 |
+
h2 {
|
| 31 |
+
font-size: 16pt;
|
| 32 |
+
border-bottom: 2px solid #000;
|
| 33 |
+
padding-bottom: 0.5rem;
|
| 34 |
+
}
|
| 35 |
+
h3 {
|
| 36 |
+
font-size: 14pt;
|
| 37 |
+
}
|
| 38 |
+
p {
|
| 39 |
+
margin-bottom: 1rem;
|
| 40 |
+
text-align: justify;
|
| 41 |
+
}
|
| 42 |
+
.figure {
|
| 43 |
+
margin: 2rem 0;
|
| 44 |
+
text-align: center;
|
| 45 |
+
border: 1px solid #ccc;
|
| 46 |
+
padding: 1rem;
|
| 47 |
+
background: #f9f9f9;
|
| 48 |
+
}
|
| 49 |
+
.figure-caption {
|
| 50 |
+
margin-top: 1rem;
|
| 51 |
+
font-style: italic;
|
| 52 |
+
text-align: left;
|
| 53 |
+
}
|
| 54 |
+
.mermaid {
|
| 55 |
+
background: white;
|
| 56 |
+
padding: 1rem;
|
| 57 |
+
border-radius: 4px;
|
| 58 |
+
}
|
| 59 |
+
.navigation {
|
| 60 |
+
margin: 3rem 0;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
background: #f8f9fa;
|
| 63 |
+
border-radius: 8px;
|
| 64 |
+
}
|
| 65 |
+
.nav-links {
|
| 66 |
+
display: flex;
|
| 67 |
+
flex-wrap: wrap;
|
| 68 |
+
gap: 1rem;
|
| 69 |
+
justify-content: center;
|
| 70 |
+
}
|
| 71 |
+
.nav-link {
|
| 72 |
+
color: #007bff;
|
| 73 |
+
text-decoration: none;
|
| 74 |
+
padding: 0.5rem 1rem;
|
| 75 |
+
border: 1px solid #007bff;
|
| 76 |
+
border-radius: 4px;
|
| 77 |
+
transition: all 0.3s ease;
|
| 78 |
+
}
|
| 79 |
+
.nav-link:hover {
|
| 80 |
+
background: #007bff;
|
| 81 |
+
color: white;
|
| 82 |
+
}
|
| 83 |
+
.footer {
|
| 84 |
+
margin-top: 3rem;
|
| 85 |
+
padding: 1rem;
|
| 86 |
+
background: #f8f9fa;
|
| 87 |
+
border-radius: 8px;
|
| 88 |
+
text-align: center;
|
| 89 |
+
}
|
| 90 |
+
.contact-info {
|
| 91 |
+
margin-top: 1rem;
|
| 92 |
+
}
|
| 93 |
+
.contact-info p {
|
| 94 |
+
margin: 0.25rem 0;
|
| 95 |
+
text-align: center;
|
| 96 |
+
}
|
| 97 |
+
</style>
|
| 98 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 99 |
<script>
|
| 100 |
mermaid.initialize({
|
|
|
|
| 107 |
nodeSpacing: 30,
|
| 108 |
rankSpacing: 30,
|
| 109 |
padding: 10
|
| 110 |
+
},
|
| 111 |
+
themeVariables: {
|
| 112 |
+
fontFamily: 'Arial Unicode MS, Arial, sans-serif'
|
| 113 |
}
|
| 114 |
});
|
| 115 |
</script>
|
| 116 |
</head>
|
| 117 |
<body>
|
| 118 |
<div class="container">
|
| 119 |
+
<h1>Mathematics Batch 04 - Geometry & Topology - Programming Framework Analysis</h1>
|
| 120 |
+
|
| 121 |
+
<p>This document presents geometry and topology processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.</p>
|
|
|
|
| 122 |
|
| 123 |
+
<h2>1. Euclidean Geometry Process</h2>
|
| 124 |
+
<div class="figure">
|
| 125 |
+
<div class="mermaid">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
graph TD
|
| 127 |
+
A1[Geometric Objects] --> B1[Euclidean Axioms]
|
| 128 |
+
C1[Point Line Plane] --> D1[Distance Measurement]
|
| 129 |
+
E1[Angle Measurement] --> F1[Geometric Constructions]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
B1 --> G1[Parallel Postulate]
|
| 132 |
+
D1 --> H1[Pythagorean Theorem]
|
| 133 |
+
F1 --> I1[Circle Constructions]
|
| 134 |
|
| 135 |
+
G1 --> J1[Triangle Properties]
|
| 136 |
+
H1 --> K1[Area Calculations]
|
| 137 |
+
I1 --> L1[Geometric Proofs]
|
| 138 |
|
| 139 |
+
J1 --> M1[Congruence Theorems]
|
| 140 |
+
K1 --> L1
|
| 141 |
+
L1 --> N1[Similarity Theorems]
|
| 142 |
|
| 143 |
+
M1 --> O1[Geometric Transformations]
|
| 144 |
+
N1 --> P1[Coordinate Geometry]
|
| 145 |
+
O1 --> Q1[Euclidean Geometry Process]
|
| 146 |
|
| 147 |
+
P1 --> R1[Euclidean Geometry Validation]
|
| 148 |
+
Q1 --> S1[Euclidean Geometry Verification]
|
| 149 |
+
R1 --> T1[Euclidean Geometry Result]
|
| 150 |
|
| 151 |
+
S1 --> U1[Euclidean Geometry Analysis]
|
| 152 |
+
T1 --> V1[Euclidean Geometry Parameters]
|
| 153 |
+
U1 --> W1[Euclidean Geometry Output]
|
| 154 |
|
| 155 |
+
V1 --> X1[Euclidean Geometry Analysis]
|
| 156 |
+
W1 --> Y1[Euclidean Geometry Final Result]
|
| 157 |
+
X1 --> Z1[Euclidean Geometry Analysis Complete]
|
| 158 |
|
| 159 |
style A1 fill:#ff6b6b,color:#fff
|
| 160 |
style C1 fill:#ff6b6b,color:#fff
|
|
|
|
| 183 |
style X1 fill:#ffd43b,color:#000
|
| 184 |
style Y1 fill:#ffd43b,color:#000
|
| 185 |
style Z1 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
style M1 fill:#51cf66,color:#fff
|
| 188 |
style N1 fill:#51cf66,color:#fff
|
|
|
|
| 198 |
style X1 fill:#51cf66,color:#fff
|
| 199 |
style Y1 fill:#51cf66,color:#fff
|
| 200 |
style Z1 fill:#51cf66,color:#fff
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
style Z1 fill:#b197fc,color:#fff
|
| 203 |
+
</div>
|
| 204 |
+
|
| 205 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 206 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 207 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 208 |
+
</div>
|
| 209 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 210 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Geometric Methods
|
| 211 |
</div>
|
| 212 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 213 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Geometric Operations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
</div>
|
| 215 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 216 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
|
|
|
| 217 |
</div>
|
| 218 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 219 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 220 |
+
</div>
|
| 221 |
+
</div>
|
| 222 |
+
|
| 223 |
+
<div class="figure-caption">
|
| 224 |
+
<strong>Figure 1.</strong> Euclidean Geometry Process. This geometry process visualization demonstrates Euclidean geometric constructions and proofs. The flowchart shows geometric object inputs and axioms, geometric methods and theorems, geometric operations and constructions, intermediate results, and final Euclidean geometry outputs.
|
| 225 |
</div>
|
| 226 |
+
</div>
|
| 227 |
|
| 228 |
+
<h2>2. Topology Process</h2>
|
| 229 |
+
<div class="figure">
|
| 230 |
+
<div class="mermaid">
|
|
|
|
| 231 |
graph TD
|
| 232 |
+
A2[Topological Space] --> B2[Open Sets]
|
| 233 |
+
C2[Topology Definition] --> D2[Neighborhood Analysis]
|
| 234 |
+
E2[Continuity Analysis] --> F2[Homeomorphism]
|
| 235 |
|
| 236 |
+
B2 --> G2[Topology Verification]
|
| 237 |
+
D2 --> H2[Connectedness]
|
| 238 |
+
F2 --> I2[Compactness]
|
| 239 |
|
| 240 |
+
G2 --> J2[Separation Axioms]
|
| 241 |
+
H2 --> K2[Homotopy Theory]
|
| 242 |
+
I2 --> L2[Fundamental Group]
|
| 243 |
|
| 244 |
+
J2 --> M2[Topological Invariants]
|
| 245 |
+
K2 --> L2
|
| 246 |
+
L2 --> N2[Covering Spaces]
|
| 247 |
|
| 248 |
+
M2 --> O2[Topology Analysis]
|
| 249 |
+
N2 --> P2[Topology Validation]
|
| 250 |
+
O2 --> Q2[Topology Process]
|
| 251 |
|
| 252 |
+
P2 --> R2[Topology Verification]
|
| 253 |
+
Q2 --> S2[Topology Result]
|
| 254 |
+
R2 --> T2[Topology Output]
|
| 255 |
|
| 256 |
+
S2 --> U2[Topology Analysis]
|
| 257 |
+
T2 --> V2[Topology Parameters]
|
| 258 |
+
U2 --> W2[Topology Final Result]
|
| 259 |
|
| 260 |
+
V2 --> X2[Topology Analysis]
|
| 261 |
+
W2 --> Y2[Topology Analysis Complete]
|
| 262 |
+
X2 --> Z2[Topology Analysis Complete]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
style A2 fill:#ff6b6b,color:#fff
|
| 265 |
style C2 fill:#ff6b6b,color:#fff
|
|
|
|
| 288 |
style X2 fill:#ffd43b,color:#000
|
| 289 |
style Y2 fill:#ffd43b,color:#000
|
| 290 |
style Z2 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
style M2 fill:#51cf66,color:#fff
|
| 293 |
style N2 fill:#51cf66,color:#fff
|
|
|
|
| 303 |
style X2 fill:#51cf66,color:#fff
|
| 304 |
style Y2 fill:#51cf66,color:#fff
|
| 305 |
style Z2 fill:#51cf66,color:#fff
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
+
style Z2 fill:#b197fc,color:#fff
|
| 308 |
+
</div>
|
| 309 |
+
|
| 310 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 311 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 312 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 313 |
</div>
|
| 314 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 315 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Topology Methods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
</div>
|
| 317 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 318 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Topology Operations
|
| 319 |
+
</div>
|
| 320 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 321 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
| 322 |
+
</div>
|
| 323 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 324 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 325 |
</div>
|
| 326 |
</div>
|
| 327 |
+
|
| 328 |
+
<div class="figure-caption">
|
| 329 |
+
<strong>Figure 2.</strong> Topology Process. This topology process visualization demonstrates topological space analysis and invariants. The flowchart shows topological space inputs and definitions, topology methods and properties, topology operations and analysis, intermediate results, and final topology outputs.
|
| 330 |
+
</div>
|
| 331 |
+
</div>
|
| 332 |
|
| 333 |
+
<h2>3. Differential Geometry Process</h2>
|
| 334 |
+
<div class="figure">
|
| 335 |
+
<div class="mermaid">
|
|
|
|
| 336 |
graph TD
|
| 337 |
+
A3[Manifold] --> B3[Tangent Space]
|
| 338 |
+
C3[Metric Tensor] --> D3[Curvature Analysis]
|
| 339 |
+
E3[Geodesic Equations] --> F3[Parallel Transport]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
+
B3 --> G3[Vector Fields]
|
| 342 |
+
D3 --> H3[Riemann Curvature]
|
| 343 |
+
F3 --> I3[Levi Civita Connection]
|
| 344 |
|
| 345 |
+
G3 --> J3[Lie Derivatives]
|
| 346 |
+
H3 --> K3[Ricci Curvature]
|
| 347 |
+
I3 --> L3[Scalar Curvature]
|
| 348 |
|
| 349 |
+
J3 --> M3[Differential Forms]
|
| 350 |
+
K3 --> L3
|
| 351 |
+
L3 --> N3[Exterior Derivatives]
|
| 352 |
|
| 353 |
+
M3 --> O3[Differential Geometry Analysis]
|
| 354 |
+
N3 --> P3[Differential Geometry Validation]
|
| 355 |
+
O3 --> Q3[Differential Geometry Process]
|
| 356 |
|
| 357 |
+
P3 --> R3[Differential Geometry Verification]
|
| 358 |
+
Q3 --> S3[Differential Geometry Result]
|
| 359 |
+
R3 --> T3[Differential Geometry Output]
|
| 360 |
|
| 361 |
+
S3 --> U3[Differential Geometry Analysis]
|
| 362 |
+
T3 --> V3[Differential Geometry Parameters]
|
| 363 |
+
U3 --> W3[Differential Geometry Final Result]
|
| 364 |
|
| 365 |
+
V3 --> X3[Differential Geometry Analysis]
|
| 366 |
+
W3 --> Y3[Differential Geometry Analysis Complete]
|
| 367 |
+
X3 --> Z3[Differential Geometry Analysis Complete]
|
| 368 |
|
| 369 |
style A3 fill:#ff6b6b,color:#fff
|
| 370 |
style C3 fill:#ff6b6b,color:#fff
|
|
|
|
| 393 |
style X3 fill:#ffd43b,color:#000
|
| 394 |
style Y3 fill:#ffd43b,color:#000
|
| 395 |
style Z3 fill:#ffd43b,color:#000
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
style M3 fill:#51cf66,color:#fff
|
| 398 |
style N3 fill:#51cf66,color:#fff
|
|
|
|
| 408 |
style X3 fill:#51cf66,color:#fff
|
| 409 |
style Y3 fill:#51cf66,color:#fff
|
| 410 |
style Z3 fill:#51cf66,color:#fff
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
+
style Z3 fill:#b197fc,color:#fff
|
| 413 |
+
</div>
|
| 414 |
+
|
| 415 |
+
<div style="margin-top: 1rem; display: flex; flex-wrap: wrap; gap: 0.5rem; justify-content: center;">
|
| 416 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 417 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ff6b6b;"></span>Triggers & Inputs
|
| 418 |
+
</div>
|
| 419 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 420 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#ffd43b;"></span>Differential Methods
|
| 421 |
</div>
|
| 422 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 423 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#51cf66;"></span>Differential Operations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
</div>
|
| 425 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 426 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#74c0fc;"></span>Intermediates
|
|
|
|
| 427 |
</div>
|
| 428 |
+
<div style="display:inline-flex; align-items:center; gap:.5rem; padding:.25rem .5rem; border-radius: 999px; border: 1px solid rgba(0,0,0,.08); background:#fff;">
|
| 429 |
+
<span style="width: 12px; height: 12px; border-radius: 2px; border:1px solid rgba(0,0,0,.15); background:#b197fc;"></span>Products
|
| 430 |
+
</div>
|
| 431 |
+
</div>
|
| 432 |
+
|
| 433 |
+
<div class="figure-caption">
|
| 434 |
+
<strong>Figure 3.</strong> Differential Geometry Process. This differential geometry process visualization demonstrates manifold analysis and curvature calculations. The flowchart shows manifold inputs and metric tensors, differential methods and connections, differential operations and curvature analysis, intermediate results, and final differential geometry outputs.
|
| 435 |
</div>
|
| 436 |
+
</div>
|
| 437 |
|
| 438 |
+
<div class="navigation">
|
| 439 |
+
<h3>Navigation</h3>
|
| 440 |
<div class="nav-links">
|
| 441 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 442 |
<a href="mathematics_batch_03.html" class="nav-link">← Previous: Abstract Algebra</a>
|
| 443 |
<a href="mathematics_batch_05.html" class="nav-link">Next: Applied Mathematics →</a>
|
| 444 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 445 |
</div>
|
| 446 |
+
</div>
|
| 447 |
|
| 448 |
+
<div class="footer">
|
| 449 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 450 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 451 |
<div class="contact-info">
|
|
|
|
| 456 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 457 |
<p>Email: [email protected]</p>
|
| 458 |
</div>
|
| 459 |
+
</div>
|
| 460 |
</div>
|
| 461 |
</body>
|
| 462 |
</html>
|
mathematics_batch_05.html
CHANGED
|
@@ -4,7 +4,97 @@
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 05 - Applied Mathematics - Programming Framework Analysis</title>
|
| 7 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 9 |
<script>
|
| 10 |
mermaid.initialize({
|
|
@@ -17,24 +107,20 @@
|
|
| 17 |
nodeSpacing: 30,
|
| 18 |
rankSpacing: 30,
|
| 19 |
padding: 10
|
|
|
|
|
|
|
|
|
|
| 20 |
}
|
| 21 |
});
|
| 22 |
</script>
|
| 23 |
</head>
|
| 24 |
<body>
|
| 25 |
<div class="container">
|
| 26 |
-
<
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
</header>
|
| 30 |
|
| 31 |
-
<
|
| 32 |
-
<h2>Applied Mathematics Processes</h2>
|
| 33 |
-
<p>This batch demonstrates the Programming Framework's application to practical mathematical operations. Each process shows the computational logic behind numerical methods, statistical analysis, and cryptographic algorithms.</p>
|
| 34 |
-
</section>
|
| 35 |
-
|
| 36 |
-
<section class="process">
|
| 37 |
-
<h2>1. Numerical Methods Process</h2>
|
| 38 |
<div class="figure">
|
| 39 |
<div class="mermaid">
|
| 40 |
graph TD
|
|
@@ -150,10 +236,9 @@ graph TD
|
|
| 150 |
<strong>Figure 1.</strong> Numerical Methods Process. This applied mathematics process visualization demonstrates root finding and integration methods. The flowchart shows numerical problem inputs and error analysis, numerical methods and algorithms, numerical operations and calculations, intermediate results, and final numerical solutions.
|
| 151 |
</div>
|
| 152 |
</div>
|
| 153 |
-
</
|
| 154 |
|
| 155 |
-
<
|
| 156 |
-
<h2>2. Statistical Analysis Process</h2>
|
| 157 |
<div class="figure">
|
| 158 |
<div class="mermaid">
|
| 159 |
graph TD
|
|
@@ -267,10 +352,9 @@ graph TD
|
|
| 267 |
<strong>Figure 2.</strong> Statistical Analysis Process. This applied mathematics process visualization demonstrates hypothesis testing and regression analysis. The flowchart shows data set inputs and hypothesis testing, statistical methods and algorithms, statistical operations and calculations, intermediate results, and final statistical analysis outputs.
|
| 268 |
</div>
|
| 269 |
</div>
|
| 270 |
-
</
|
| 271 |
|
| 272 |
-
<
|
| 273 |
-
<h2>3. Cryptographic Algorithms Process</h2>
|
| 274 |
<div class="figure">
|
| 275 |
<div class="mermaid">
|
| 276 |
graph TD
|
|
@@ -384,19 +468,19 @@ graph TD
|
|
| 384 |
<strong>Figure 3.</strong> Cryptographic Algorithms Process. This applied mathematics process visualization demonstrates RSA, elliptic curve cryptography, and hash functions. The flowchart shows plaintext inputs and key generation, cryptographic methods and algorithms, cryptographic operations and calculations, intermediate results, and final cryptographic analysis outputs.
|
| 385 |
</div>
|
| 386 |
</div>
|
| 387 |
-
</
|
| 388 |
|
| 389 |
-
<
|
| 390 |
-
<
|
| 391 |
<div class="nav-links">
|
| 392 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 393 |
<a href="mathematics_batch_04.html" class="nav-link">← Previous: Geometry & Topology</a>
|
| 394 |
<a href="mathematics_batch_06.html" class="nav-link">Next: Discrete Mathematics →</a>
|
| 395 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 396 |
</div>
|
| 397 |
-
</
|
| 398 |
|
| 399 |
-
<footer>
|
| 400 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 401 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 402 |
<div class="contact-info">
|
|
@@ -407,7 +491,7 @@ graph TD
|
|
| 407 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 408 |
<p>Email: [email protected]</p>
|
| 409 |
</div>
|
| 410 |
-
</
|
| 411 |
</div>
|
| 412 |
</body>
|
| 413 |
</html>
|
|
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 05 - Applied Mathematics - Programming Framework Analysis</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Times New Roman', Times, serif, 'Arial Unicode MS';
|
| 10 |
+
margin: 0;
|
| 11 |
+
background: #ffffff;
|
| 12 |
+
color: #000000;
|
| 13 |
+
line-height: 1.6;
|
| 14 |
+
font-size: 12pt;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 1000px;
|
| 18 |
+
margin: 0 auto;
|
| 19 |
+
padding: 1.5rem;
|
| 20 |
+
}
|
| 21 |
+
h1, h2, h3 {
|
| 22 |
+
color: #000000;
|
| 23 |
+
margin-top: 1.5rem;
|
| 24 |
+
margin-bottom: 0.75rem;
|
| 25 |
+
}
|
| 26 |
+
h1 {
|
| 27 |
+
font-size: 18pt;
|
| 28 |
+
text-align: center;
|
| 29 |
+
}
|
| 30 |
+
h2 {
|
| 31 |
+
font-size: 16pt;
|
| 32 |
+
border-bottom: 2px solid #000;
|
| 33 |
+
padding-bottom: 0.5rem;
|
| 34 |
+
}
|
| 35 |
+
h3 {
|
| 36 |
+
font-size: 14pt;
|
| 37 |
+
}
|
| 38 |
+
p {
|
| 39 |
+
margin-bottom: 1rem;
|
| 40 |
+
text-align: justify;
|
| 41 |
+
}
|
| 42 |
+
.figure {
|
| 43 |
+
margin: 2rem 0;
|
| 44 |
+
text-align: center;
|
| 45 |
+
border: 1px solid #ccc;
|
| 46 |
+
padding: 1rem;
|
| 47 |
+
background: #f9f9f9;
|
| 48 |
+
}
|
| 49 |
+
.figure-caption {
|
| 50 |
+
margin-top: 1rem;
|
| 51 |
+
font-style: italic;
|
| 52 |
+
text-align: left;
|
| 53 |
+
}
|
| 54 |
+
.mermaid {
|
| 55 |
+
background: white;
|
| 56 |
+
padding: 1rem;
|
| 57 |
+
border-radius: 4px;
|
| 58 |
+
}
|
| 59 |
+
.navigation {
|
| 60 |
+
margin: 3rem 0;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
background: #f8f9fa;
|
| 63 |
+
border-radius: 8px;
|
| 64 |
+
}
|
| 65 |
+
.nav-links {
|
| 66 |
+
display: flex;
|
| 67 |
+
flex-wrap: wrap;
|
| 68 |
+
gap: 1rem;
|
| 69 |
+
justify-content: center;
|
| 70 |
+
}
|
| 71 |
+
.nav-link {
|
| 72 |
+
color: #007bff;
|
| 73 |
+
text-decoration: none;
|
| 74 |
+
padding: 0.5rem 1rem;
|
| 75 |
+
border: 1px solid #007bff;
|
| 76 |
+
border-radius: 4px;
|
| 77 |
+
transition: all 0.3s ease;
|
| 78 |
+
}
|
| 79 |
+
.nav-link:hover {
|
| 80 |
+
background: #007bff;
|
| 81 |
+
color: white;
|
| 82 |
+
}
|
| 83 |
+
.footer {
|
| 84 |
+
margin-top: 3rem;
|
| 85 |
+
padding: 1rem;
|
| 86 |
+
background: #f8f9fa;
|
| 87 |
+
border-radius: 8px;
|
| 88 |
+
text-align: center;
|
| 89 |
+
}
|
| 90 |
+
.contact-info {
|
| 91 |
+
margin-top: 1rem;
|
| 92 |
+
}
|
| 93 |
+
.contact-info p {
|
| 94 |
+
margin: 0.25rem 0;
|
| 95 |
+
text-align: center;
|
| 96 |
+
}
|
| 97 |
+
</style>
|
| 98 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 99 |
<script>
|
| 100 |
mermaid.initialize({
|
|
|
|
| 107 |
nodeSpacing: 30,
|
| 108 |
rankSpacing: 30,
|
| 109 |
padding: 10
|
| 110 |
+
},
|
| 111 |
+
themeVariables: {
|
| 112 |
+
fontFamily: 'Arial Unicode MS, Arial, sans-serif'
|
| 113 |
}
|
| 114 |
});
|
| 115 |
</script>
|
| 116 |
</head>
|
| 117 |
<body>
|
| 118 |
<div class="container">
|
| 119 |
+
<h1>Mathematics Batch 05 - Applied Mathematics - Programming Framework Analysis</h1>
|
| 120 |
+
|
| 121 |
+
<p>This document presents applied mathematics processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.</p>
|
|
|
|
| 122 |
|
| 123 |
+
<h2>1. Numerical Methods Process</h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
<div class="figure">
|
| 125 |
<div class="mermaid">
|
| 126 |
graph TD
|
|
|
|
| 236 |
<strong>Figure 1.</strong> Numerical Methods Process. This applied mathematics process visualization demonstrates root finding and integration methods. The flowchart shows numerical problem inputs and error analysis, numerical methods and algorithms, numerical operations and calculations, intermediate results, and final numerical solutions.
|
| 237 |
</div>
|
| 238 |
</div>
|
| 239 |
+
</div>
|
| 240 |
|
| 241 |
+
<h2>2. Statistical Analysis Process</h2>
|
|
|
|
| 242 |
<div class="figure">
|
| 243 |
<div class="mermaid">
|
| 244 |
graph TD
|
|
|
|
| 352 |
<strong>Figure 2.</strong> Statistical Analysis Process. This applied mathematics process visualization demonstrates hypothesis testing and regression analysis. The flowchart shows data set inputs and hypothesis testing, statistical methods and algorithms, statistical operations and calculations, intermediate results, and final statistical analysis outputs.
|
| 353 |
</div>
|
| 354 |
</div>
|
| 355 |
+
</div>
|
| 356 |
|
| 357 |
+
<h2>3. Cryptographic Algorithms Process</h2>
|
|
|
|
| 358 |
<div class="figure">
|
| 359 |
<div class="mermaid">
|
| 360 |
graph TD
|
|
|
|
| 468 |
<strong>Figure 3.</strong> Cryptographic Algorithms Process. This applied mathematics process visualization demonstrates RSA, elliptic curve cryptography, and hash functions. The flowchart shows plaintext inputs and key generation, cryptographic methods and algorithms, cryptographic operations and calculations, intermediate results, and final cryptographic analysis outputs.
|
| 469 |
</div>
|
| 470 |
</div>
|
| 471 |
+
</div>
|
| 472 |
|
| 473 |
+
<div class="navigation">
|
| 474 |
+
<h3>Navigation</h3>
|
| 475 |
<div class="nav-links">
|
| 476 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 477 |
<a href="mathematics_batch_04.html" class="nav-link">← Previous: Geometry & Topology</a>
|
| 478 |
<a href="mathematics_batch_06.html" class="nav-link">Next: Discrete Mathematics →</a>
|
| 479 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 480 |
</div>
|
| 481 |
+
</div>
|
| 482 |
|
| 483 |
+
<div class="footer">
|
| 484 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 485 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 486 |
<div class="contact-info">
|
|
|
|
| 491 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 492 |
<p>Email: [email protected]</p>
|
| 493 |
</div>
|
| 494 |
+
</div>
|
| 495 |
</div>
|
| 496 |
</body>
|
| 497 |
</html>
|
mathematics_batch_06.html
CHANGED
|
@@ -4,7 +4,97 @@
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 06 - Discrete Mathematics - Programming Framework Analysis</title>
|
| 7 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 9 |
<script>
|
| 10 |
mermaid.initialize({
|
|
@@ -17,24 +107,20 @@
|
|
| 17 |
nodeSpacing: 30,
|
| 18 |
rankSpacing: 30,
|
| 19 |
padding: 10
|
|
|
|
|
|
|
|
|
|
| 20 |
}
|
| 21 |
});
|
| 22 |
</script>
|
| 23 |
</head>
|
| 24 |
<body>
|
| 25 |
<div class="container">
|
| 26 |
-
<
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
</header>
|
| 30 |
|
| 31 |
-
<
|
| 32 |
-
<h2>Discrete Mathematics Processes</h2>
|
| 33 |
-
<p>This batch demonstrates the Programming Framework's application to discrete mathematical operations. Each process shows the computational logic behind graph algorithms, combinatorial counting, and logical reasoning.</p>
|
| 34 |
-
</section>
|
| 35 |
-
|
| 36 |
-
<section class="process">
|
| 37 |
-
<h2>1. Graph Theory Algorithms Process</h2>
|
| 38 |
<div class="figure">
|
| 39 |
<div class="mermaid">
|
| 40 |
graph TD
|
|
@@ -148,10 +234,9 @@ graph TD
|
|
| 148 |
<strong>Figure 1.</strong> Graph Theory Algorithms Process. This discrete mathematics process visualization demonstrates shortest path, minimum spanning tree, and network flow algorithms. The flowchart shows graph inputs and properties, graph theory methods and algorithms, graph operations and calculations, intermediate results, and final graph theory outputs.
|
| 149 |
</div>
|
| 150 |
</div>
|
| 151 |
-
</
|
| 152 |
|
| 153 |
-
<
|
| 154 |
-
<h2>2. Combinatorics Process</h2>
|
| 155 |
<div class="figure">
|
| 156 |
<div class="mermaid">
|
| 157 |
graph TD
|
|
@@ -265,10 +350,9 @@ graph TD
|
|
| 265 |
<strong>Figure 2.</strong> Combinatorics Process. This discrete mathematics process visualization demonstrates permutations, combinations, and counting principles. The flowchart shows combinatorial problem inputs and principles, combinatorial methods and formulas, counting operations and calculations, intermediate results, and final combinatorial analysis outputs.
|
| 266 |
</div>
|
| 267 |
</div>
|
| 268 |
-
</
|
| 269 |
|
| 270 |
-
<
|
| 271 |
-
<h2>3. Logic & Set Theory Process</h2>
|
| 272 |
<div class="figure">
|
| 273 |
<div class="mermaid">
|
| 274 |
graph TD
|
|
@@ -382,19 +466,19 @@ graph TD
|
|
| 382 |
<strong>Figure 3.</strong> Logic & Set Theory Process. This discrete mathematics process visualization demonstrates boolean algebra, set operations, and proof techniques. The flowchart shows logical statement inputs and proof techniques, logic and set theory methods and algorithms, proof operations and calculations, intermediate results, and final logic and set theory analysis outputs.
|
| 383 |
</div>
|
| 384 |
</div>
|
| 385 |
-
</
|
| 386 |
|
| 387 |
-
<
|
| 388 |
-
<
|
| 389 |
<div class="nav-links">
|
| 390 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 391 |
<a href="mathematics_batch_05.html" class="nav-link">← Previous: Applied Mathematics</a>
|
| 392 |
<a href="mathematics_batch_07.html" class="nav-link">Next: Historical & Educational →</a>
|
| 393 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 394 |
</div>
|
| 395 |
-
</
|
| 396 |
|
| 397 |
-
<footer>
|
| 398 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 399 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 400 |
<div class="contact-info">
|
|
@@ -405,7 +489,7 @@ graph TD
|
|
| 405 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 406 |
<p>Email: [email protected]</p>
|
| 407 |
</div>
|
| 408 |
-
</
|
| 409 |
</div>
|
| 410 |
</body>
|
| 411 |
</html>
|
|
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 06 - Discrete Mathematics - Programming Framework Analysis</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Times New Roman', Times, serif, 'Arial Unicode MS';
|
| 10 |
+
margin: 0;
|
| 11 |
+
background: #ffffff;
|
| 12 |
+
color: #000000;
|
| 13 |
+
line-height: 1.6;
|
| 14 |
+
font-size: 12pt;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 1000px;
|
| 18 |
+
margin: 0 auto;
|
| 19 |
+
padding: 1.5rem;
|
| 20 |
+
}
|
| 21 |
+
h1, h2, h3 {
|
| 22 |
+
color: #000000;
|
| 23 |
+
margin-top: 1.5rem;
|
| 24 |
+
margin-bottom: 0.75rem;
|
| 25 |
+
}
|
| 26 |
+
h1 {
|
| 27 |
+
font-size: 18pt;
|
| 28 |
+
text-align: center;
|
| 29 |
+
}
|
| 30 |
+
h2 {
|
| 31 |
+
font-size: 16pt;
|
| 32 |
+
border-bottom: 2px solid #000;
|
| 33 |
+
padding-bottom: 0.5rem;
|
| 34 |
+
}
|
| 35 |
+
h3 {
|
| 36 |
+
font-size: 14pt;
|
| 37 |
+
}
|
| 38 |
+
p {
|
| 39 |
+
margin-bottom: 1rem;
|
| 40 |
+
text-align: justify;
|
| 41 |
+
}
|
| 42 |
+
.figure {
|
| 43 |
+
margin: 2rem 0;
|
| 44 |
+
text-align: center;
|
| 45 |
+
border: 1px solid #ccc;
|
| 46 |
+
padding: 1rem;
|
| 47 |
+
background: #f9f9f9;
|
| 48 |
+
}
|
| 49 |
+
.figure-caption {
|
| 50 |
+
margin-top: 1rem;
|
| 51 |
+
font-style: italic;
|
| 52 |
+
text-align: left;
|
| 53 |
+
}
|
| 54 |
+
.mermaid {
|
| 55 |
+
background: white;
|
| 56 |
+
padding: 1rem;
|
| 57 |
+
border-radius: 4px;
|
| 58 |
+
}
|
| 59 |
+
.navigation {
|
| 60 |
+
margin: 3rem 0;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
background: #f8f9fa;
|
| 63 |
+
border-radius: 8px;
|
| 64 |
+
}
|
| 65 |
+
.nav-links {
|
| 66 |
+
display: flex;
|
| 67 |
+
flex-wrap: wrap;
|
| 68 |
+
gap: 1rem;
|
| 69 |
+
justify-content: center;
|
| 70 |
+
}
|
| 71 |
+
.nav-link {
|
| 72 |
+
color: #007bff;
|
| 73 |
+
text-decoration: none;
|
| 74 |
+
padding: 0.5rem 1rem;
|
| 75 |
+
border: 1px solid #007bff;
|
| 76 |
+
border-radius: 4px;
|
| 77 |
+
transition: all 0.3s ease;
|
| 78 |
+
}
|
| 79 |
+
.nav-link:hover {
|
| 80 |
+
background: #007bff;
|
| 81 |
+
color: white;
|
| 82 |
+
}
|
| 83 |
+
.footer {
|
| 84 |
+
margin-top: 3rem;
|
| 85 |
+
padding: 1rem;
|
| 86 |
+
background: #f8f9fa;
|
| 87 |
+
border-radius: 8px;
|
| 88 |
+
text-align: center;
|
| 89 |
+
}
|
| 90 |
+
.contact-info {
|
| 91 |
+
margin-top: 1rem;
|
| 92 |
+
}
|
| 93 |
+
.contact-info p {
|
| 94 |
+
margin: 0.25rem 0;
|
| 95 |
+
text-align: center;
|
| 96 |
+
}
|
| 97 |
+
</style>
|
| 98 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 99 |
<script>
|
| 100 |
mermaid.initialize({
|
|
|
|
| 107 |
nodeSpacing: 30,
|
| 108 |
rankSpacing: 30,
|
| 109 |
padding: 10
|
| 110 |
+
},
|
| 111 |
+
themeVariables: {
|
| 112 |
+
fontFamily: 'Arial Unicode MS, Arial, sans-serif'
|
| 113 |
}
|
| 114 |
});
|
| 115 |
</script>
|
| 116 |
</head>
|
| 117 |
<body>
|
| 118 |
<div class="container">
|
| 119 |
+
<h1>Mathematics Batch 06 - Discrete Mathematics - Programming Framework Analysis</h1>
|
| 120 |
+
|
| 121 |
+
<p>This document presents discrete mathematics processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.</p>
|
|
|
|
| 122 |
|
| 123 |
+
<h2>1. Graph Theory Algorithms Process</h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
<div class="figure">
|
| 125 |
<div class="mermaid">
|
| 126 |
graph TD
|
|
|
|
| 234 |
<strong>Figure 1.</strong> Graph Theory Algorithms Process. This discrete mathematics process visualization demonstrates shortest path, minimum spanning tree, and network flow algorithms. The flowchart shows graph inputs and properties, graph theory methods and algorithms, graph operations and calculations, intermediate results, and final graph theory outputs.
|
| 235 |
</div>
|
| 236 |
</div>
|
| 237 |
+
</div>
|
| 238 |
|
| 239 |
+
<h2>2. Combinatorics Process</h2>
|
|
|
|
| 240 |
<div class="figure">
|
| 241 |
<div class="mermaid">
|
| 242 |
graph TD
|
|
|
|
| 350 |
<strong>Figure 2.</strong> Combinatorics Process. This discrete mathematics process visualization demonstrates permutations, combinations, and counting principles. The flowchart shows combinatorial problem inputs and principles, combinatorial methods and formulas, counting operations and calculations, intermediate results, and final combinatorial analysis outputs.
|
| 351 |
</div>
|
| 352 |
</div>
|
| 353 |
+
</div>
|
| 354 |
|
| 355 |
+
<h2>3. Logic & Set Theory Process</h2>
|
|
|
|
| 356 |
<div class="figure">
|
| 357 |
<div class="mermaid">
|
| 358 |
graph TD
|
|
|
|
| 466 |
<strong>Figure 3.</strong> Logic & Set Theory Process. This discrete mathematics process visualization demonstrates boolean algebra, set operations, and proof techniques. The flowchart shows logical statement inputs and proof techniques, logic and set theory methods and algorithms, proof operations and calculations, intermediate results, and final logic and set theory analysis outputs.
|
| 467 |
</div>
|
| 468 |
</div>
|
| 469 |
+
</div>
|
| 470 |
|
| 471 |
+
<div class="navigation">
|
| 472 |
+
<h3>Navigation</h3>
|
| 473 |
<div class="nav-links">
|
| 474 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 475 |
<a href="mathematics_batch_05.html" class="nav-link">← Previous: Applied Mathematics</a>
|
| 476 |
<a href="mathematics_batch_07.html" class="nav-link">Next: Historical & Educational →</a>
|
| 477 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 478 |
</div>
|
| 479 |
+
</div>
|
| 480 |
|
| 481 |
+
<div class="footer">
|
| 482 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 483 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 484 |
<div class="contact-info">
|
|
|
|
| 489 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 490 |
<p>Email: [email protected]</p>
|
| 491 |
</div>
|
| 492 |
+
</div>
|
| 493 |
</div>
|
| 494 |
</body>
|
| 495 |
</html>
|
mathematics_batch_07.html
CHANGED
|
@@ -4,7 +4,97 @@
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 07 - Historical & Educational - Programming Framework Analysis</title>
|
| 7 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 9 |
<script>
|
| 10 |
mermaid.initialize({
|
|
@@ -17,24 +107,20 @@
|
|
| 17 |
nodeSpacing: 30,
|
| 18 |
rankSpacing: 30,
|
| 19 |
padding: 10
|
|
|
|
|
|
|
|
|
|
| 20 |
}
|
| 21 |
});
|
| 22 |
</script>
|
| 23 |
</head>
|
| 24 |
<body>
|
| 25 |
<div class="container">
|
| 26 |
-
<
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
</header>
|
| 30 |
|
| 31 |
-
<
|
| 32 |
-
<h2>Historical & Educational Processes</h2>
|
| 33 |
-
<p>This batch demonstrates the Programming Framework's application to historically significant mathematical and logical systems. Each process shows the computational logic behind Euclid's geometric method and Aristotle's syllogistic reasoning.</p>
|
| 34 |
-
</section>
|
| 35 |
-
|
| 36 |
-
<section class="process">
|
| 37 |
-
<h2>1. Euclid's Geometry Process</h2>
|
| 38 |
<div class="figure">
|
| 39 |
<div class="mermaid">
|
| 40 |
graph TD
|
|
@@ -148,10 +234,9 @@ graph TD
|
|
| 148 |
<strong>Figure 1.</strong> Euclid's Geometry Process. This historical mathematics process visualization demonstrates the axiomatic method of Euclidean geometry. The flowchart shows geometric problem inputs and postulates, Euclidean methods and axioms, geometric operations and proofs, intermediate results, and final Euclidean geometry outputs.
|
| 149 |
</div>
|
| 150 |
</div>
|
| 151 |
-
</
|
| 152 |
|
| 153 |
-
<
|
| 154 |
-
<h2>2. Aristotle's Syllogism Process</h2>
|
| 155 |
<div class="figure">
|
| 156 |
<div class="mermaid">
|
| 157 |
graph TD
|
|
@@ -265,18 +350,18 @@ graph TD
|
|
| 265 |
<strong>Figure 2.</strong> Aristotle's Syllogism Process. This historical logic process visualization demonstrates syllogistic reasoning and logical deduction. The flowchart shows logical premise inputs and syllogistic forms, syllogistic methods and figures, logical operations and validity checks, intermediate results, and final Aristotelian logic outputs.
|
| 266 |
</div>
|
| 267 |
</div>
|
| 268 |
-
</
|
| 269 |
|
| 270 |
-
<
|
| 271 |
-
<
|
| 272 |
<div class="nav-links">
|
| 273 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 274 |
<a href="mathematics_batch_06.html" class="nav-link">← Previous: Discrete Mathematics</a>
|
| 275 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 276 |
</div>
|
| 277 |
-
</
|
| 278 |
|
| 279 |
-
<footer>
|
| 280 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 281 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 282 |
<div class="contact-info">
|
|
@@ -287,7 +372,7 @@ graph TD
|
|
| 287 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 288 |
<p>Email: [email protected]</p>
|
| 289 |
</div>
|
| 290 |
-
</
|
| 291 |
</div>
|
| 292 |
</body>
|
| 293 |
</html>
|
|
|
|
| 4 |
<meta charset="UTF-8" />
|
| 5 |
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
| 6 |
<title>Mathematics Batch 07 - Historical & Educational - Programming Framework Analysis</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Times New Roman', Times, serif, 'Arial Unicode MS';
|
| 10 |
+
margin: 0;
|
| 11 |
+
background: #ffffff;
|
| 12 |
+
color: #000000;
|
| 13 |
+
line-height: 1.6;
|
| 14 |
+
font-size: 12pt;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 1000px;
|
| 18 |
+
margin: 0 auto;
|
| 19 |
+
padding: 1.5rem;
|
| 20 |
+
}
|
| 21 |
+
h1, h2, h3 {
|
| 22 |
+
color: #000000;
|
| 23 |
+
margin-top: 1.5rem;
|
| 24 |
+
margin-bottom: 0.75rem;
|
| 25 |
+
}
|
| 26 |
+
h1 {
|
| 27 |
+
font-size: 18pt;
|
| 28 |
+
text-align: center;
|
| 29 |
+
}
|
| 30 |
+
h2 {
|
| 31 |
+
font-size: 16pt;
|
| 32 |
+
border-bottom: 2px solid #000;
|
| 33 |
+
padding-bottom: 0.5rem;
|
| 34 |
+
}
|
| 35 |
+
h3 {
|
| 36 |
+
font-size: 14pt;
|
| 37 |
+
}
|
| 38 |
+
p {
|
| 39 |
+
margin-bottom: 1rem;
|
| 40 |
+
text-align: justify;
|
| 41 |
+
}
|
| 42 |
+
.figure {
|
| 43 |
+
margin: 2rem 0;
|
| 44 |
+
text-align: center;
|
| 45 |
+
border: 1px solid #ccc;
|
| 46 |
+
padding: 1rem;
|
| 47 |
+
background: #f9f9f9;
|
| 48 |
+
}
|
| 49 |
+
.figure-caption {
|
| 50 |
+
margin-top: 1rem;
|
| 51 |
+
font-style: italic;
|
| 52 |
+
text-align: left;
|
| 53 |
+
}
|
| 54 |
+
.mermaid {
|
| 55 |
+
background: white;
|
| 56 |
+
padding: 1rem;
|
| 57 |
+
border-radius: 4px;
|
| 58 |
+
}
|
| 59 |
+
.navigation {
|
| 60 |
+
margin: 3rem 0;
|
| 61 |
+
padding: 1rem;
|
| 62 |
+
background: #f8f9fa;
|
| 63 |
+
border-radius: 8px;
|
| 64 |
+
}
|
| 65 |
+
.nav-links {
|
| 66 |
+
display: flex;
|
| 67 |
+
flex-wrap: wrap;
|
| 68 |
+
gap: 1rem;
|
| 69 |
+
justify-content: center;
|
| 70 |
+
}
|
| 71 |
+
.nav-link {
|
| 72 |
+
color: #007bff;
|
| 73 |
+
text-decoration: none;
|
| 74 |
+
padding: 0.5rem 1rem;
|
| 75 |
+
border: 1px solid #007bff;
|
| 76 |
+
border-radius: 4px;
|
| 77 |
+
transition: all 0.3s ease;
|
| 78 |
+
}
|
| 79 |
+
.nav-link:hover {
|
| 80 |
+
background: #007bff;
|
| 81 |
+
color: white;
|
| 82 |
+
}
|
| 83 |
+
.footer {
|
| 84 |
+
margin-top: 3rem;
|
| 85 |
+
padding: 1rem;
|
| 86 |
+
background: #f8f9fa;
|
| 87 |
+
border-radius: 8px;
|
| 88 |
+
text-align: center;
|
| 89 |
+
}
|
| 90 |
+
.contact-info {
|
| 91 |
+
margin-top: 1rem;
|
| 92 |
+
}
|
| 93 |
+
.contact-info p {
|
| 94 |
+
margin: 0.25rem 0;
|
| 95 |
+
text-align: center;
|
| 96 |
+
}
|
| 97 |
+
</style>
|
| 98 |
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/mermaid.min.js"></script>
|
| 99 |
<script>
|
| 100 |
mermaid.initialize({
|
|
|
|
| 107 |
nodeSpacing: 30,
|
| 108 |
rankSpacing: 30,
|
| 109 |
padding: 10
|
| 110 |
+
},
|
| 111 |
+
themeVariables: {
|
| 112 |
+
fontFamily: 'Arial Unicode MS, Arial, sans-serif'
|
| 113 |
}
|
| 114 |
});
|
| 115 |
</script>
|
| 116 |
</head>
|
| 117 |
<body>
|
| 118 |
<div class="container">
|
| 119 |
+
<h1>Mathematics Batch 07 - Historical & Educational - Programming Framework Analysis</h1>
|
| 120 |
+
|
| 121 |
+
<p>This document presents historical and educational mathematics processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.</p>
|
|
|
|
| 122 |
|
| 123 |
+
<h2>1. Euclid's Geometry Process</h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
<div class="figure">
|
| 125 |
<div class="mermaid">
|
| 126 |
graph TD
|
|
|
|
| 234 |
<strong>Figure 1.</strong> Euclid's Geometry Process. This historical mathematics process visualization demonstrates the axiomatic method of Euclidean geometry. The flowchart shows geometric problem inputs and postulates, Euclidean methods and axioms, geometric operations and proofs, intermediate results, and final Euclidean geometry outputs.
|
| 235 |
</div>
|
| 236 |
</div>
|
| 237 |
+
</div>
|
| 238 |
|
| 239 |
+
<h2>2. Aristotle's Syllogism Process</h2>
|
|
|
|
| 240 |
<div class="figure">
|
| 241 |
<div class="mermaid">
|
| 242 |
graph TD
|
|
|
|
| 350 |
<strong>Figure 2.</strong> Aristotle's Syllogism Process. This historical logic process visualization demonstrates syllogistic reasoning and logical deduction. The flowchart shows logical premise inputs and syllogistic forms, syllogistic methods and figures, logical operations and validity checks, intermediate results, and final Aristotelian logic outputs.
|
| 351 |
</div>
|
| 352 |
</div>
|
| 353 |
+
</div>
|
| 354 |
|
| 355 |
+
<div class="navigation">
|
| 356 |
+
<h3>Navigation</h3>
|
| 357 |
<div class="nav-links">
|
| 358 |
<a href="mathematics_index.html" class="nav-link">← Back to Mathematics Index</a>
|
| 359 |
<a href="mathematics_batch_06.html" class="nav-link">← Previous: Discrete Mathematics</a>
|
| 360 |
<a href="index.html" class="nav-link">Programming Framework Home</a>
|
| 361 |
</div>
|
| 362 |
+
</div>
|
| 363 |
|
| 364 |
+
<div class="footer">
|
| 365 |
<p><strong>Generated using the Programming Framework methodology</strong></p>
|
| 366 |
<p>Each flowchart preserves maximum detail through optimized Mermaid configuration</p>
|
| 367 |
<div class="contact-info">
|
|
|
|
| 372 |
<p>CUNY Graduate Center (New Media Lab)</p>
|
| 373 |
<p>Email: [email protected]</p>
|
| 374 |
</div>
|
| 375 |
+
</div>
|
| 376 |
</div>
|
| 377 |
</body>
|
| 378 |
</html>
|