Chemistry Batch 13: Quantum Chemistry

Process 1: Molecular Orbitals
graph TD A1[Atomic Orbitals] --> B1[Molecular Orbital Method] C1[Electronic Structure] --> D1[Wave Function Analysis] E1[Energy Levels] --> F1[Computational Setup] B1 --> G1[Orbital Combination] D1 --> H1[Wave Function Calculation] F1 --> I1[Basis Set Selection] G1 --> J1[Linear Combination] H1 --> K1[Schrödinger Equation] I1 --> L1[Computational Parameters] J1 --> M1[Orbital Formation] K1 --> L1 L1 --> N1[Energy Calculation] M1 --> O1[Bonding Orbitals] N1 --> P1[Quantum Calculation] O1 --> Q1[Electronic Structure] P1 --> R1[Antibonding Orbitals] Q1 --> S1[Orbital Analysis] R1 --> T1[Molecular Properties] S1 --> U1[Energy Level Analysis] T1 --> V1[Property Calculation] U1 --> W1[Quantum Efficiency] V1 --> X1[Molecular Characterization] W1 --> Y1[Process Optimization] X1 --> Z1[Final Molecular Orbitals] Y1 --> Z1 style A1 fill:#ff6b6b,color:#fff style C1 fill:#ff6b6b,color:#fff style E1 fill:#ff6b6b,color:#fff style B1 fill:#ffd43b,color:#000 style D1 fill:#ffd43b,color:#000 style F1 fill:#ffd43b,color:#000 style G1 fill:#ffd43b,color:#000 style H1 fill:#ffd43b,color:#000 style I1 fill:#ffd43b,color:#000 style J1 fill:#ffd43b,color:#000 style K1 fill:#ffd43b,color:#000 style L1 fill:#ffd43b,color:#000 style M1 fill:#51cf66,color:#fff style N1 fill:#51cf66,color:#fff style O1 fill:#51cf66,color:#fff style P1 fill:#51cf66,color:#fff style Q1 fill:#51cf66,color:#fff style R1 fill:#51cf66,color:#fff style S1 fill:#51cf66,color:#fff style T1 fill:#51cf66,color:#fff style U1 fill:#51cf66,color:#fff style V1 fill:#51cf66,color:#fff style W1 fill:#51cf66,color:#fff style X1 fill:#51cf66,color:#fff style Y1 fill:#51cf66,color:#fff style Z1 fill:#b197fc,color:#fff
Figure 1. Molecular orbitals process showing orbital combination, electronic structure, and quantum calculation.
Process 2: Electronic Transitions
graph TD A2[Ground State] --> B2[Electronic Transition Method] C2[Excited States] --> D2[Energy Level Analysis] E2[Photon Energy] --> F2[Transition Calculation] B2 --> G2[State Preparation] D2 --> H2[Energy Level Calculation] F2 --> I2[Transition Probability] G2 --> J2[Initial State] H2 --> K2[Energy Differences] I2 --> L2[Selection Rules] J2 --> M2[State Characterization] K2 --> L2 L2 --> N2[Transition Analysis] M2 --> O2[State Transitions] N2 --> P2[Electronic Excitation] O2 --> Q2[Quantum Analysis] P2 --> R2[Excited State Formation] Q2 --> S2[Transition Analysis] R2 --> T2[State Properties] S2 --> U2[Transition Probability] T2 --> V2[Property Calculation] U2 --> W2[Quantum Efficiency] V2 --> X2[State Characterization] W2 --> Y2[Process Optimization] X2 --> Z2[Final Electronic States] Y2 --> Z2 style A2 fill:#ff6b6b,color:#fff style C2 fill:#ff6b6b,color:#fff style E2 fill:#ff6b6b,color:#fff style B2 fill:#ffd43b,color:#000 style D2 fill:#ffd43b,color:#000 style F2 fill:#ffd43b,color:#000 style G2 fill:#ffd43b,color:#000 style H2 fill:#ffd43b,color:#000 style I2 fill:#ffd43b,color:#000 style J2 fill:#ffd43b,color:#000 style K2 fill:#ffd43b,color:#000 style L2 fill:#ffd43b,color:#000 style M2 fill:#51cf66,color:#fff style N2 fill:#51cf66,color:#fff style O2 fill:#51cf66,color:#fff style P2 fill:#51cf66,color:#fff style Q2 fill:#51cf66,color:#fff style R2 fill:#51cf66,color:#fff style S2 fill:#51cf66,color:#fff style T2 fill:#51cf66,color:#fff style U2 fill:#51cf66,color:#fff style V2 fill:#51cf66,color:#fff style W2 fill:#51cf66,color:#fff style X2 fill:#51cf66,color:#fff style Y2 fill:#51cf66,color:#fff style Z2 fill:#b197fc,color:#fff
Figure 2. Electronic transitions process illustrating state transitions, excitation analysis, and quantum efficiency.
Process 3: Computational Methods
graph TD A3[Molecular System] --> B3[Computational Method Selection] C3[Quantum Theory] --> D3[Algorithm Implementation] E3[Computational Resources] --> F3[Calculation Setup] B3 --> G3[Method Selection] D3 --> H3[Algorithm Development] F3 --> I3[Resource Allocation] G3 --> J3[DFT Selection] H3 --> K3[Code Implementation] I3 --> L3[Computational Parameters] J3 --> M3[Functional Selection] K3 --> L3 L3 --> N3[Calculation Execution] M3 --> O3[Electronic Structure] N3 --> P3[Quantum Calculation] O3 --> Q3[Computational Analysis] P3 --> R3[Energy Calculation] Q3 --> S3[Property Analysis] R3 --> T3[Molecular Properties] S3 --> U3[Accuracy Assessment] T3 --> V3[Property Validation] U3 --> W3[Computational Efficiency] V3 --> X3[Result Characterization] W3 --> Y3[Process Optimization] X3 --> Z3[Final Computational Results] Y3 --> Z3 style A3 fill:#ff6b6b,color:#fff style C3 fill:#ff6b6b,color:#fff style E3 fill:#ff6b6b,color:#fff style B3 fill:#ffd43b,color:#000 style D3 fill:#ffd43b,color:#000 style F3 fill:#ffd43b,color:#000 style G3 fill:#ffd43b,color:#000 style H3 fill:#ffd43b,color:#000 style I3 fill:#ffd43b,color:#000 style J3 fill:#ffd43b,color:#000 style K3 fill:#ffd43b,color:#000 style L3 fill:#ffd43b,color:#000 style M3 fill:#51cf66,color:#fff style N3 fill:#51cf66,color:#fff style O3 fill:#51cf66,color:#fff style P3 fill:#51cf66,color:#fff style Q3 fill:#51cf66,color:#fff style R3 fill:#51cf66,color:#fff style S3 fill:#51cf66,color:#fff style T3 fill:#51cf66,color:#fff style U3 fill:#51cf66,color:#fff style V3 fill:#51cf66,color:#fff style W3 fill:#51cf66,color:#fff style X3 fill:#51cf66,color:#fff style Y3 fill:#51cf66,color:#fff style Z3 fill:#b197fc,color:#fff
Figure 3. Computational methods process showing algorithm implementation, quantum calculation, and computational efficiency.
Process 4: Reaction Pathways
graph TD A4[Reactant State] --> B4[Reaction Pathway Method] C4[Transition States] --> D4[Energy Surface Analysis] E4[Product State] --> F4[Pathway Calculation] B4 --> G4[Pathway Identification] D4 --> H4[Energy Surface Mapping] F4 --> I4[Reaction Coordinate] G4 --> J4[Initial State] H4 --> K4[Energy Barriers] I4 --> L4[Coordinate Analysis] J4 --> M4[Reaction Initiation] K4 --> L4 L4 --> N4[Transition State] M4 --> O4[Pathway Evolution] N4 --> P4[Reaction Progress] O4 --> Q4[Quantum Analysis] P4 --> R4[Product Formation] Q4 --> S4[Pathway Analysis] R4 --> T4[Reaction Properties] S4 --> U4[Barrier Analysis] T4 --> V4[Property Calculation] U4 --> W4[Pathway Efficiency] V4 --> X4[Reaction Characterization] W4 --> Y4[Process Optimization] X4 --> Z4[Final Reaction Pathway] Y4 --> Z4 style A4 fill:#ff6b6b,color:#fff style C4 fill:#ff6b6b,color:#fff style E4 fill:#ff6b6b,color:#fff style B4 fill:#ffd43b,color:#000 style D4 fill:#ffd43b,color:#000 style F4 fill:#ffd43b,color:#000 style G4 fill:#ffd43b,color:#000 style H4 fill:#ffd43b,color:#000 style I4 fill:#ffd43b,color:#000 style J4 fill:#ffd43b,color:#000 style K4 fill:#ffd43b,color:#000 style L4 fill:#ffd43b,color:#000 style M4 fill:#51cf66,color:#fff style N4 fill:#51cf66,color:#fff style O4 fill:#51cf66,color:#fff style P4 fill:#51cf66,color:#fff style Q4 fill:#51cf66,color:#fff style R4 fill:#51cf66,color:#fff style S4 fill:#51cf66,color:#fff style T4 fill:#51cf66,color:#fff style U4 fill:#51cf66,color:#fff style V4 fill:#51cf66,color:#fff style W4 fill:#51cf66,color:#fff style X4 fill:#51cf66,color:#fff style Y4 fill:#51cf66,color:#fff style Z4 fill:#b197fc,color:#fff
Figure 4. Reaction pathways process showing transition states, energy barriers, and pathway optimization.
Process 5: Spectroscopic Calculations
graph TD A5[Molecular System] --> B5[Spectroscopic Calculation Method] C5[Quantum States] --> D5[Transition Analysis] E5[Spectroscopic Properties] --> F5[Calculation Setup] B5 --> G5[State Preparation] D5 --> H5[Transition Selection] F5 --> I5[Computational Parameters] G5 --> J5[Initial State] H5 --> K5[Transition Rules] I5 --> L5[Calculation Setup] J5 --> M5[State Characterization] K5 --> L5 L5 --> N5[Spectroscopic Calculation] M5 --> O5[Property Calculation] N5 --> P5[Transition Analysis] O5 --> Q5[Quantum Analysis] P5 --> R5[Spectroscopic Properties] Q5 --> S5[Property Analysis] R5 --> T5[Spectroscopic Features] S5 --> U5[Intensity Calculation] T5 --> V5[Feature Analysis] U5 --> W5[Spectroscopic Efficiency] V5 --> X5[Spectroscopic Characterization] W5 --> Y5[Process Optimization] X5 --> Z5[Final Spectroscopic Properties] Y5 --> Z5 style A5 fill:#ff6b6b,color:#fff style C5 fill:#ff6b6b,color:#fff style E5 fill:#ff6b6b,color:#fff style B5 fill:#ffd43b,color:#000 style D5 fill:#ffd43b,color:#000 style F5 fill:#ffd43b,color:#000 style G5 fill:#ffd43b,color:#000 style H5 fill:#ffd43b,color:#000 style I5 fill:#ffd43b,color:#000 style J5 fill:#ffd43b,color:#000 style K5 fill:#ffd43b,color:#000 style L5 fill:#ffd43b,color:#000 style M5 fill:#51cf66,color:#fff style N5 fill:#51cf66,color:#fff style O5 fill:#51cf66,color:#fff style P5 fill:#51cf66,color:#fff style Q5 fill:#51cf66,color:#fff style R5 fill:#51cf66,color:#fff style S5 fill:#51cf66,color:#fff style T5 fill:#51cf66,color:#fff style U5 fill:#51cf66,color:#fff style V5 fill:#51cf66,color:#fff style W5 fill:#51cf66,color:#fff style X5 fill:#51cf66,color:#fff style Y5 fill:#51cf66,color:#fff style Z5 fill:#b197fc,color:#fff
Figure 5. Spectroscopic calculations process showing transition analysis, property calculation, and spectroscopic efficiency.

Gary Welz

Retired Faculty Member

John Jay College, CUNY (Department of Mathematics and Computer Science)

Borough of Manhattan Community College, CUNY

CUNY Graduate Center (New Media Lab)

Email: gwelz@jjay.cuny.edu