justinblalock87
commited on
Commit
·
08328de
1
Parent(s):
dbde0cb
Final
Browse files- .DS_Store +0 -0
- __pycache__/app.cpython-38.pyc +0 -0
- __pycache__/quantize.cpython-38.pyc +0 -0
- app.py +8 -25
- quantize.py +11 -69
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
__pycache__/app.cpython-38.pyc
DELETED
|
Binary file (2.21 kB)
|
|
|
__pycache__/quantize.cpython-38.pyc
DELETED
|
Binary file (3.64 kB)
|
|
|
app.py
CHANGED
|
@@ -1,25 +1,14 @@
|
|
| 1 |
-
import os
|
| 2 |
from typing import Optional
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
import quantize
|
| 6 |
from huggingface_hub import HfApi, login
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def run(model_id: str, model_version: str, additional_args: str, is_private: bool, token: Optional[str] = None) -> str:
|
| 11 |
if model_id == "":
|
| 12 |
-
return "Please
|
| 13 |
login(token=token)
|
| 14 |
-
|
| 15 |
-
api = HfApi(token=token)
|
| 16 |
-
else:
|
| 17 |
-
api = HfApi(token=HF_TOKEN)
|
| 18 |
-
hf_is_private = api.model_info(repo_id=model_id).private
|
| 19 |
-
if is_private and not hf_is_private:
|
| 20 |
-
api = HfApi(token=HF_TOKEN)
|
| 21 |
-
|
| 22 |
-
print("is_private", is_private)
|
| 23 |
|
| 24 |
quantize.quantize(api=api, model_id=model_id, model_version=model_version, additional_args=additional_args)
|
| 25 |
|
|
@@ -29,10 +18,6 @@ Simple utility tool to quantize diffusion models and convert them to CoreML.
|
|
| 29 |
"""
|
| 30 |
|
| 31 |
title="Quantize model and convert to CoreML"
|
| 32 |
-
allow_flagging="never"
|
| 33 |
-
|
| 34 |
-
def token_text(visible=False):
|
| 35 |
-
return gr.Text(max_lines=1, label="your_hf_token", visible=True)
|
| 36 |
|
| 37 |
with gr.Blocks(title=title) as demo:
|
| 38 |
description = gr.Markdown(f"""# {title}""")
|
|
@@ -40,11 +25,10 @@ with gr.Blocks(title=title) as demo:
|
|
| 40 |
|
| 41 |
with gr.Row() as r:
|
| 42 |
with gr.Column() as c:
|
| 43 |
-
model_id = gr.Text(max_lines=1, label="
|
| 44 |
-
model_version = gr.Text(max_lines=1, label="
|
| 45 |
-
additional_args = gr.Text(max_lines=1, label="
|
| 46 |
-
|
| 47 |
-
token = token_text()
|
| 48 |
with gr.Row() as c:
|
| 49 |
clean = gr.ClearButton()
|
| 50 |
submit = gr.Button("Submit", variant="primary")
|
|
@@ -52,7 +36,6 @@ with gr.Blocks(title=title) as demo:
|
|
| 52 |
with gr.Column() as d:
|
| 53 |
output = gr.Markdown()
|
| 54 |
|
| 55 |
-
|
| 56 |
-
submit.click(run, inputs=[model_id, model_version, additional_args, is_private, token], outputs=output, concurrency_limit=1)
|
| 57 |
|
| 58 |
demo.queue(max_size=10).launch(show_api=True)
|
|
|
|
|
|
|
| 1 |
from typing import Optional
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
import quantize
|
| 5 |
from huggingface_hub import HfApi, login
|
| 6 |
|
| 7 |
+
def run(model_id: str, model_version: str, additional_args: str, token: Optional[str] = None) -> str:
|
|
|
|
|
|
|
| 8 |
if model_id == "":
|
| 9 |
+
return "Please enter model_id."
|
| 10 |
login(token=token)
|
| 11 |
+
api = HfApi(token=token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
quantize.quantize(api=api, model_id=model_id, model_version=model_version, additional_args=additional_args)
|
| 14 |
|
|
|
|
| 18 |
"""
|
| 19 |
|
| 20 |
title="Quantize model and convert to CoreML"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
with gr.Blocks(title=title) as demo:
|
| 23 |
description = gr.Markdown(f"""# {title}""")
|
|
|
|
| 25 |
|
| 26 |
with gr.Row() as r:
|
| 27 |
with gr.Column() as c:
|
| 28 |
+
model_id = gr.Text(max_lines=1, label="ID of output repo")
|
| 29 |
+
model_version = gr.Text(max_lines=1, label="Version of model to convert", value="stabilityai/sd-turbo")
|
| 30 |
+
additional_args = gr.Text(max_lines=1, label="Additional Args (optional)")
|
| 31 |
+
token = gr.Text(max_lines=1, label="Your HuggingFace write token")
|
|
|
|
| 32 |
with gr.Row() as c:
|
| 33 |
clean = gr.ClearButton()
|
| 34 |
submit = gr.Button("Submit", variant="primary")
|
|
|
|
| 36 |
with gr.Column() as d:
|
| 37 |
output = gr.Markdown()
|
| 38 |
|
| 39 |
+
submit.click(run, inputs=[model_id, model_version, additional_args, token], outputs=output, concurrency_limit=1)
|
|
|
|
| 40 |
|
| 41 |
demo.queue(max_size=10).launch(show_api=True)
|
quantize.py
CHANGED
|
@@ -1,28 +1,26 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import json
|
| 3 |
import os
|
| 4 |
import shutil
|
| 5 |
-
from collections import defaultdict
|
| 6 |
from tempfile import TemporaryDirectory
|
| 7 |
-
from typing import
|
| 8 |
import subprocess
|
| 9 |
-
|
| 10 |
-
import torch
|
| 11 |
-
|
| 12 |
-
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
|
| 13 |
from huggingface_hub.file_download import repo_folder_name
|
| 14 |
-
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file
|
| 15 |
|
| 16 |
ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]]
|
| 17 |
|
| 18 |
-
def
|
| 19 |
model_id: str, folder: str, token: Optional[str], model_version: str, additional_args: str
|
| 20 |
) -> ConversionResult:
|
| 21 |
|
| 22 |
command = ["python3", "-m" , "python_coreml_stable_diffusion.torch2coreml", "--model-version", model_version, "-o", folder]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
command.extend(additional_args.split(" "))
|
| 24 |
|
| 25 |
-
print("Starting conversion")
|
| 26 |
|
| 27 |
subprocess.run(command)
|
| 28 |
|
|
@@ -44,62 +42,6 @@ def quantize(
|
|
| 44 |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
| 45 |
os.makedirs(folder)
|
| 46 |
try:
|
| 47 |
-
|
| 48 |
finally:
|
| 49 |
-
shutil.rmtree(folder)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
if __name__ == "__main__":
|
| 53 |
-
DESCRIPTION = """
|
| 54 |
-
Simple utility tool to convert automatically some weights on the hub to `safetensors` format.
|
| 55 |
-
It is PyTorch exclusive for now.
|
| 56 |
-
It works by downloading the weights (PT), converting them locally, and uploading them back
|
| 57 |
-
as a PR on the hub.
|
| 58 |
-
"""
|
| 59 |
-
parser = argparse.ArgumentParser(description=DESCRIPTION)
|
| 60 |
-
parser.add_argument(
|
| 61 |
-
"model_id",
|
| 62 |
-
type=str,
|
| 63 |
-
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
|
| 64 |
-
)
|
| 65 |
-
parser.add_argument(
|
| 66 |
-
"--revision",
|
| 67 |
-
type=str,
|
| 68 |
-
help="The revision to convert",
|
| 69 |
-
)
|
| 70 |
-
parser.add_argument(
|
| 71 |
-
"--force",
|
| 72 |
-
action="store_true",
|
| 73 |
-
help="Create the PR even if it already exists of if the model was already converted.",
|
| 74 |
-
)
|
| 75 |
-
parser.add_argument(
|
| 76 |
-
"-y",
|
| 77 |
-
action="store_true",
|
| 78 |
-
help="Ignore safety prompt",
|
| 79 |
-
)
|
| 80 |
-
args = parser.parse_args()
|
| 81 |
-
model_id = args.model_id
|
| 82 |
-
api = HfApi()
|
| 83 |
-
if args.y:
|
| 84 |
-
txt = "y"
|
| 85 |
-
else:
|
| 86 |
-
txt = input(
|
| 87 |
-
"This conversion script will unpickle a pickled file, which is inherently unsafe. If you do not trust this file, we invite you to use"
|
| 88 |
-
" https://huggingface.co/spaces/safetensors/convert or google colab or other hosted solution to avoid potential issues with this file."
|
| 89 |
-
" Continue [Y/n] ?"
|
| 90 |
-
)
|
| 91 |
-
if txt.lower() in {"", "y"}:
|
| 92 |
-
commit_info, errors = convert(api, model_id, revision=args.revision, force=args.force)
|
| 93 |
-
string = f"""
|
| 94 |
-
### Success 🔥
|
| 95 |
-
Yay! This model was successfully converted and a PR was open using your token, here:
|
| 96 |
-
[{commit_info.pr_url}]({commit_info.pr_url})
|
| 97 |
-
"""
|
| 98 |
-
if errors:
|
| 99 |
-
string += "\nErrors during conversion:\n"
|
| 100 |
-
string += "\n".join(
|
| 101 |
-
f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors
|
| 102 |
-
)
|
| 103 |
-
print(string)
|
| 104 |
-
else:
|
| 105 |
-
print(f"Answer was `{txt}` aborting.")
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
|
|
|
| 3 |
from tempfile import TemporaryDirectory
|
| 4 |
+
from typing import List, Optional, Tuple
|
| 5 |
import subprocess
|
| 6 |
+
from huggingface_hub import CommitOperationAdd, HfApi
|
|
|
|
|
|
|
|
|
|
| 7 |
from huggingface_hub.file_download import repo_folder_name
|
|
|
|
| 8 |
|
| 9 |
ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]]
|
| 10 |
|
| 11 |
+
def convert_to_core_ml(
|
| 12 |
model_id: str, folder: str, token: Optional[str], model_version: str, additional_args: str
|
| 13 |
) -> ConversionResult:
|
| 14 |
|
| 15 |
command = ["python3", "-m" , "python_coreml_stable_diffusion.torch2coreml", "--model-version", model_version, "-o", folder]
|
| 16 |
+
additional_args = additional_args
|
| 17 |
+
if additional_args == "":
|
| 18 |
+
# Set default args
|
| 19 |
+
additional_args = f"--convert-unet --convert-text-encoder --convert-vae-decoder --attention-implementation SPLIT_EINSUM --quantize-nbits 6"
|
| 20 |
+
|
| 21 |
command.extend(additional_args.split(" "))
|
| 22 |
|
| 23 |
+
print("Starting conversion: ", command)
|
| 24 |
|
| 25 |
subprocess.run(command)
|
| 26 |
|
|
|
|
| 42 |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
| 43 |
os.makedirs(folder)
|
| 44 |
try:
|
| 45 |
+
convert_to_core_ml(model_id, folder, token=api.token, model_version=model_version, additional_args=additional_args)
|
| 46 |
finally:
|
| 47 |
+
shutil.rmtree(folder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|