File size: 11,405 Bytes
08fac87
3663260
08fac87
 
429393a
 
 
 
 
08fac87
 
 
 
e1365aa
08fac87
 
 
 
e1365aa
08fac87
 
 
e1365aa
 
 
 
 
 
 
08fac87
 
 
 
 
 
e1365aa
 
08fac87
 
 
 
e1365aa
08fac87
 
e1365aa
 
 
 
 
08fac87
7989349
 
1ec08a1
 
e1365aa
7989349
e1365aa
08fac87
 
 
 
 
e1365aa
08fac87
 
e1365aa
 
 
 
08fac87
e1365aa
7989349
e1365aa
08fac87
 
 
 
 
e1365aa
08fac87
 
 
 
 
 
 
e1365aa
 
7320bf1
 
 
 
e1365aa
08fac87
 
e1365aa
 
7320bf1
 
 
 
e1365aa
08fac87
 
 
 
 
 
 
 
 
e1365aa
08fac87
 
 
 
e1365aa
 
08fac87
 
 
e1365aa
08fac87
 
 
 
e1365aa
 
 
08fac87
 
e1365aa
08fac87
 
 
 
e1365aa
08fac87
 
 
 
e1365aa
 
08fac87
 
 
 
429393a
08fac87
 
e1365aa
08fac87
e1365aa
08fac87
 
 
 
 
e1365aa
08fac87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1365aa
 
 
08fac87
e1365aa
 
08fac87
e1365aa
08fac87
e1365aa
08fac87
e1365aa
08fac87
 
e1365aa
08fac87
 
 
 
 
 
 
 
e1365aa
 
08fac87
 
 
 
 
 
 
 
 
 
e1365aa
08fac87
e1365aa
 
 
 
 
 
 
 
 
 
 
 
 
 
08fac87
e1365aa
 
 
 
 
 
 
 
 
 
08fac87
e1365aa
 
 
 
 
 
 
 
08fac87
e1365aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08fac87
e1365aa
08fac87
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Main retriever modules
from langchain_classic.retrievers import ParentDocumentRetriever, EnsembleRetriever
from langchain_core.retrievers import BaseRetriever, RetrieverLike
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma
from typing import Any, Optional
import chromadb
import os
import re
from calendar import month_abbr, month_name

# Local modules
from mods.bm25s_retriever import BM25SRetriever
from mods.file_system import LocalFileStore
from util import get_sources


def BuildRetriever(
    db_dir: str,
    collection: str,
    search_type: str,
    top_k: Optional[int] = 6,
    start_year: Optional[int] = None,
    end_year: Optional[int] = None,
    months: Optional[list[str]] = None,
):
    """
    Build retriever instance.
    All retriever types are configured to return up to 6 documents for fair comparison in evals.

    Args:
        db_dir: Database directory
        collection: Email collection
        search_type: Type of search to use. Options: "dense", "sparse", "hybrid"
        top_k: Number of documents to retrieve for "dense" and "sparse"
        start_year: Start year (optional)
        end_year: End year (optional)
        months: List of months (3-letter abbreviations) (optional)
    """
    if search_type == "dense":
        if not (start_year or end_year or months):
            # No year or month filtering, so directly use base retriever
            return BuildRetrieverDense(
                db_dir=db_dir, collection=collection, top_k=top_k
            )
        else:
            # Get 10000 documents then keep top_k filtered by year and month
            # If this is increased to 20000 we get a noticeable slowdown on HF Spaces
            # If this is increased to 100000 we get: chromadb.errors.InternalError: Error executing plan:
            #   Internal error: error returned from database: (code: 1) too many SQL variables
            base_retriever = BuildRetrieverDense(
                db_dir=db_dir, collection=collection, top_k=10000
            )
            return TopKRetriever(
                base_retriever=base_retriever,
                top_k=top_k,
                start_year=start_year,
                end_year=end_year,
                months=months,
            )
    if search_type == "sparse":
        if not (start_year or end_year or months):
            return BuildRetrieverSparse(
                db_dir=db_dir, collection=collection, top_k=top_k
            )
        else:
            base_retriever = BuildRetrieverSparse(
                db_dir=db_dir, collection=collection, top_k=10000
            )
            return TopKRetriever(
                base_retriever=base_retriever,
                top_k=top_k,
                start_year=start_year,
                end_year=end_year,
                months=months,
            )
    elif search_type == "hybrid":
        # Hybrid search (dense + sparse) - use ensemble method
        # https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html
        # Use floor (top_k // 2) and ceiling -(top_k // -2) to divide odd values of top_k
        # https://stackoverflow.com/questions/14822184/is-there-a-ceiling-equivalent-of-operator-in-python
        dense_retriever = BuildRetriever(
            db_dir,
            collection,
            "dense",
            (top_k // 2),
            start_year,
            end_year,
            months,
        )
        sparse_retriever = BuildRetriever(
            db_dir,
            collection,
            "sparse",
            -(top_k // -2),
            start_year,
            end_year,
            months,
        )
        ensemble_retriever = EnsembleRetriever(
            retrievers=[dense_retriever, sparse_retriever], weights=[1, 1]
        )
        return ensemble_retriever
    else:
        raise ValueError(f"Unsupported search type: {search_type}")


def BuildRetrieverSparse(db_dir, collection, top_k=6):
    """
    Build sparse retriever instance

    Args:
        db_dir: Database directory
        collection: Email collection
        top_k: Number of documents to retrieve
    """
    # BM25 persistent directory
    bm25_persist_directory = os.path.join(db_dir, collection, "bm25")
    if not os.path.exists(bm25_persist_directory):
        os.makedirs(bm25_persist_directory)

    # Use BM25 sparse search
    # top_k can't be larger than the corpus size (number of emails)
    corpus_size = len(get_sources(db_dir, collection))
    k = top_k if top_k < corpus_size else corpus_size
    retriever = BM25SRetriever.from_persisted_directory(
        path=bm25_persist_directory,
        k=k,
    )
    return retriever


def BuildRetrieverDense(db_dir, collection, top_k=6):
    """
    Build dense retriever instance with ChromaDB vectorstore

    Args:
        db_dir: Database directory
        collection: Email collection
        top_k: Number of documents to retrieve
    """

    # Define embedding model
    embedding_function = OpenAIEmbeddings(model="text-embedding-3-small")
    # Create vector store
    client_settings = chromadb.config.Settings(anonymized_telemetry=False)
    persist_directory = os.path.join(db_dir, collection, "chroma")
    vectorstore = Chroma(
        collection_name=collection,
        embedding_function=embedding_function,
        client_settings=client_settings,
        persist_directory=persist_directory,
    )
    # The storage layer for the parent documents
    file_store = os.path.join(db_dir, collection, "file_store")
    byte_store = LocalFileStore(file_store)
    # Text splitter for child documents
    child_splitter = RecursiveCharacterTextSplitter(
        separators=["\n\n", "\n", ".", " ", ""],
        chunk_size=1000,
        chunk_overlap=100,
    )
    # Text splitter for parent documents
    parent_splitter = RecursiveCharacterTextSplitter(
        separators=["\n\n\nFrom"], chunk_size=1, chunk_overlap=0
    )
    # Instantiate a retriever
    retriever = ParentDocumentRetriever(
        vectorstore=vectorstore,
        # NOTE: https://github.com/langchain-ai/langchain/issues/9345
        # Define byte_store = LocalFileStore(file_store) and use byte_store instead of docstore in ParentDocumentRetriever
        byte_store=byte_store,
        child_splitter=child_splitter,
        parent_splitter=parent_splitter,
        # Get top k documents
        search_kwargs={"k": top_k},
    )
    return retriever


class TopKRetriever(BaseRetriever):
    """
    Retriever that wraps a base retriever and returns the top k documents,
    optionally matching given start and/or end years.

    Code adapted from langchain/retrievers/contextual_compression.py
    """

    # Base Retriever to use for getting relevant documents
    base_retriever: RetrieverLike
    # Number of documents to return
    top_k: int = 6
    # Optional year and month arguments
    start_year: Optional[int] = None
    end_year: Optional[int] = None
    months: Optional[list[str]] = None

    def _get_relevant_documents(
        self,
        query: str,
        *,
        run_manager: CallbackManagerForRetrieverRun,
        **kwargs: Any,
    ) -> list[Document]:
        """
        Return the top k documents within start and end years (and months) if given.

        Returns:
            Sequence of documents
        """
        # Run the search with the base retriever
        filtered_docs = retrieved_docs = self.base_retriever.invoke(
            query, config={"callbacks": run_manager.get_child()}, **kwargs
        )
        if retrieved_docs:

            # Get the email source files and basenames
            sources = [doc.metadata["source"] for doc in filtered_docs]
            filenames = [os.path.basename(source) for source in sources]
            # Get the years and months
            pattern = re.compile(r"(\d{4})-([A-Za-z]+)\.txt")
            matches = [pattern.match(filename) for filename in filenames]
            # Extract years and month names, handling None matches
            years = []
            month_names = []
            for match in matches:
                if match:
                    years.append(int(match.group(1)))
                    month_names.append(match.group(2))
                else:
                    years.append(None)
                    month_names.append(None)

            # Create mapping from 3-letter abbreviations to full month names
            # month_abbr[0] is empty string, month_abbr[1] is "Jan", etc.
            # month_name[0] is empty string, month_name[1] is "January", etc.
            abbr_to_full = {month_abbr[i].lower(): month_name[i] for i in range(1, 13)}

            # Convert months list (3-letter abbreviations) to full month names
            target_months = None
            if self.months:
                target_months = [
                    abbr_to_full.get(month.lower()) for month in self.months
                ]
                # Filter out None values in case of invalid abbreviations
                target_months = [m for m in target_months if m is not None]

            # Initialize filter flags
            year_filter = None
            month_filter = None

            # Filtering by year
            if self.start_year or self.end_year:
                if self.start_year and self.end_year:
                    year_filter = [
                        year is not None
                        and year >= self.start_year
                        and year <= self.end_year
                        for year in years
                    ]
                elif self.start_year:
                    year_filter = [
                        year is not None and year >= self.start_year for year in years
                    ]
                elif self.end_year:
                    year_filter = [
                        year is not None and year <= self.end_year for year in years
                    ]

            # Filtering by month
            if target_months:
                month_filter = [
                    month_name is not None and month_name in target_months
                    for month_name in month_names
                ]

            # Combine filters
            if year_filter is not None and month_filter is not None:
                # Both year and month filters
                combined_filter = [
                    year and month for year, month in zip(year_filter, month_filter)
                ]
                filtered_docs = [
                    doc for doc, keep in zip(retrieved_docs, combined_filter) if keep
                ]
            elif year_filter is not None:
                # Only year filter
                filtered_docs = [
                    doc for doc, keep in zip(retrieved_docs, year_filter) if keep
                ]
            elif month_filter is not None:
                # Only month filter
                filtered_docs = [
                    doc for doc, keep in zip(retrieved_docs, month_filter) if keep
                ]

            # Return the top k docs
            return filtered_docs[: self.top_k]

        else:
            return []