File size: 36,476 Bytes
aae3ba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
import re
import cv2
import copy
import numpy as np
from typing import *
from PIL import Image
from scipy.spatial.transform import Rotation as R
import utils3d # pip install git+https://github.com/EasternJournalist/utils3d.git#egg=utils3d
def sample_perspective_rot_flip_with_traj_constraint(
src_intrinsics: np.ndarray, # [3, 3] normalized camera intrinsics matrix of source image
tgt_aspect: float, # target aspect ratio (width / height)
trajectory_uv: np.ndarray, # [N, 2] trajectory points in normalized [0, 1] coordinates. None means no constraint.
margin_ratio: float, # margin ratio for trajectory bounding box expansion/shrinkage
center_augmentation: float, # 0.0 means no augmentation, 1.0 means random center within 50% of fov
fov_range_absolute: Tuple[float, float], # (min_fov, max_fov) in degrees
fov_range_relative: Tuple[float, float], # (min_fov, max_fov) relative to source image fov
inplane_range: Tuple[float, float] = (0.0, 0.0), # (min_angle, max_angle) in radians
min_overlap: float = 0.75, # minimum required intersection ratio after cropping relative to bbox_uv area
flip_augmentation: float = 0.0, # 0.0 means no flip, 1.0 means random flip with 50% chance
rng: np.random.Generator = None
):
"Compute target intrinsics, rotation matrix, and optional flip for perspective warping augmentation with trajectory constraints."
if rng is None:
rng = np.random.default_rng()
raw_horizontal, raw_vertical = abs(1.0 / src_intrinsics[0, 0]), abs(1.0 / src_intrinsics[1, 1])
raw_fov_x, raw_fov_y = utils3d.numpy.intrinsics_to_fov(src_intrinsics)
# ------- 1. set target fov -------
fov_range_absolute_min, fov_range_absolute_max = fov_range_absolute
fov_range_relative_min, fov_range_relative_max = fov_range_relative
tgt_fov_x_min = min(fov_range_relative_min * raw_fov_x,
utils3d.focal_to_fov(utils3d.fov_to_focal(fov_range_relative_min * raw_fov_y) / tgt_aspect))
tgt_fov_x_max = min(fov_range_relative_max * raw_fov_x,
utils3d.focal_to_fov(utils3d.fov_to_focal(fov_range_relative_max * raw_fov_y) / tgt_aspect))
tgt_fov_x_min = max(np.deg2rad(fov_range_absolute_min), tgt_fov_x_min)
tgt_fov_x_max = min(np.deg2rad(fov_range_absolute_max), tgt_fov_x_max)
# trajectory constraint on fov
if trajectory_uv is not None:
bbox_uv = np.array([trajectory_uv[:, 0].min(), trajectory_uv[:, 1].min(),
trajectory_uv[:, 0].max(), trajectory_uv[:, 1].max()], dtype=np.float32)
bbox_uv = shrink_or_expand_bbox_uv(bbox_uv, margin_ratio)
traj_x_range = bbox_uv[2] - bbox_uv[0]
traj_y_range = bbox_uv[3] - bbox_uv[1]
traj_fov_x = 2 * np.arctan(0.5 * traj_x_range * raw_horizontal)
traj_fov_x = np.clip(traj_fov_x, 1e-2, None)
traj_fov_y = 2 * np.arctan(0.5 * traj_y_range * raw_vertical)
traj_fov_y = np.clip(traj_fov_y, 1e-2, None)
traj_fov_needed = max(traj_fov_x, utils3d.focal_to_fov(utils3d.fov_to_focal(traj_fov_y) / tgt_aspect))
tgt_fov_x_min = max(tgt_fov_x_min, traj_fov_needed)
tgt_fov_x = rng.uniform(min(tgt_fov_x_min, tgt_fov_x_max), tgt_fov_x_max)
tgt_fov_y = utils3d.focal_to_fov(utils3d.numpy.fov_to_focal(tgt_fov_x) * tgt_aspect)
# ------- 2. set target image center -------
valid_center_dtheta_range = center_augmentation * np.array([-0.5, 0.5]) * (raw_fov_x - tgt_fov_x)
valid_center_dphi_range = center_augmentation * np.array([-0.5, 0.5]) * (raw_fov_y - tgt_fov_y)
valid_center_x_range = 0.5 + 0.5 * np.tan(valid_center_dtheta_range) / np.tan(raw_fov_x / 2)
valid_center_y_range = 0.5 + 0.5 * np.tan(valid_center_dphi_range) / np.tan(raw_fov_y / 2)
crop_box_size_x = 2 * np.tan(tgt_fov_x * 0.5) / raw_horizontal
crop_box_size_y = 2 * np.tan(tgt_fov_y * 0.5) / raw_vertical
# ensure the crop box position contains the trajectory bounding box
if trajectory_uv is not None:
cx_min = bbox_uv[2] - crop_box_size_x / 2
cx_max = bbox_uv[0] + crop_box_size_x / 2
cy_min = bbox_uv[3] - crop_box_size_y / 2
cy_max = bbox_uv[1] + crop_box_size_y / 2
valid_center_x_range = resolve_valid_range(cx_min, cx_max,
valid_center_x_range[0], valid_center_x_range[1])
valid_center_y_range = resolve_valid_range(cy_min, cy_max,
valid_center_y_range[0], valid_center_y_range[1])
cu = rng.uniform(valid_center_x_range[0], valid_center_x_range[1])
cv = rng.uniform(valid_center_y_range[0], valid_center_y_range[1])
# ------- 3. initial camera transformation for target view -------
direction = utils3d.unproject_cv(
np.array([[cu, cv]], dtype=np.float32),
np.array([1.0], dtype=np.float32), intrinsics=src_intrinsics
)[0]
R_trans = utils3d.rotation_matrix_from_vectors(direction, np.array([0, 0, 1], dtype=np.float32))
# ------- 4. shrink the target view to fit into the original image range -------
corners = np.array([[0,0],[0,1],[1,1],[1,0]], dtype=np.float32)
corners = np.concatenate([corners, np.ones((4,1),dtype=np.float32)], axis=1)
corners = corners @ (np.linalg.inv(src_intrinsics).T @ R_trans.T)
corners = corners[:,:2] / corners[:,2:3]
tgt_horizontal = float(2 * np.tan(tgt_fov_x * 0.5))
tgt_vertical = float(2 * np.tan(tgt_fov_y * 0.5))
warp_h, warp_v = float('inf'), float('inf')
for i in range(4):
inter, _ = utils3d.numpy.ray_intersection(
np.array([0.,0.]), np.array([[tgt_aspect,1.0],[tgt_aspect,-1.0]]),
corners[i-1], corners[i]-corners[i-1]
)
warp_h = min(warp_h, 2 * abs(inter[:,0]).min())
warp_v = min(warp_v, 2 * abs(inter[:,1]).min())
tgt_horizontal = min(tgt_horizontal, warp_h)
tgt_vertical = min(tgt_vertical, warp_v)
# ------- 5. finalize target intrinsics -------
fx, fy = 1 / tgt_horizontal, 1 / tgt_vertical
tgt_intrinsics = utils3d.numpy.intrinsics_from_focal_center(fx, fy, 0.5, 0.5).astype(np.float32)
# ------- 6. compute continuous valid in-plane rotation range via binary search -------
# define crop rectangle corners relative to center
crop_box_size_x, crop_box_size_y = tgt_horizontal / raw_horizontal, tgt_vertical / raw_vertical # update crop box size after shrinking
half_w, half_h = crop_box_size_x/2, crop_box_size_y/2
rect = np.array([[-half_w, -half_h],[-half_w, half_h],[half_w, half_h],[half_w, -half_h]])
# area of bbox_uv for overlap normalization
if trajectory_uv is not None:
bbox_area = (bbox_uv[2] - bbox_uv[0]) * (bbox_uv[3] - bbox_uv[1])
def is_valid(ang: float) -> bool:
R2 = np.array([[np.cos(ang), -np.sin(ang)], [np.sin(ang), np.cos(ang)]], dtype=np.float32)
pts = (rect @ R2.T) + np.array([cu, cv])
# check within image
if pts.min() < 0 or pts.max() > 1:
return False
if trajectory_uv is None:
return True
x0, y0 = pts[:,0].min(), pts[:,1].min()
x1, y1 = pts[:,0].max(), pts[:,1].max()
# degenerate bbox?
if bbox_area <= 0:
# ensure crop bounding box contains bbox_uv extents
return (x0 <= bbox_uv[0] <= x1) and (x0 <= bbox_uv[2] <= x1) and \
(y0 <= bbox_uv[1] <= y1) and (y0 <= bbox_uv[3] <= y1)
# compute intersection
ix0, iy0 = max(x0, bbox_uv[0]), max(y0, bbox_uv[1])
ix1, iy1 = min(x1, bbox_uv[2]), min(y1, bbox_uv[3])
if ix1 <= ix0 or iy1 <= iy0:
return False
inter_area = (ix1 - ix0) * (iy1 - iy0)
return (inter_area / bbox_area) >= min_overlap
# binary search for max positive angle
lo_p, hi_p = 0.0, inplane_range[1]
for _ in range(20):
mid = (lo_p + hi_p) / 2
if is_valid(mid): lo_p = mid
else: hi_p = mid
max_valid = lo_p
# binary search for max negative angle
lo_n, hi_n = inplane_range[0], 0.0
for _ in range(20):
mid = (lo_n + hi_n) / 2
if is_valid(mid): hi_n = mid
else: lo_n = mid
min_valid = hi_n
# final sample within [min_valid, max_valid]
if min_valid > max_valid:
rot_angle = 0.0
else:
rot_angle = float(rng.uniform(min_valid, max_valid))
# apply in-plane rotation
R_inplane = np.array([[np.cos(rot_angle), -np.sin(rot_angle), 0],
[np.sin(rot_angle), np.cos(rot_angle), 0],
[0, 0, 1]], dtype=np.float32)
R_final = R_inplane @ R_trans
# ------- 7. apply optional horizontal flip -------
flip_prob = flip_augmentation * 0.5
do_flip = rng.random() < flip_prob
if do_flip:
# reflect principal point u around center
tgt_intrinsics[0, 2] = 1.0 - tgt_intrinsics[0, 2]
# optional: also reflect rotation around vertical axis
M_flip = np.diag([-1.0, 1.0, 1.0]).astype(np.float32)
else:
M_flip = np.eye(3, dtype=np.float32)
R_final = M_flip @ R_final
return tgt_intrinsics, R_final, M_flip
def warp_perspective(
src_image: np.ndarray = None, # [H, W, C] source image to be warped
src_intrinsics: np.ndarray = None, # [3, 3] normalized camera intrinsics matrix of source image
tgt_intrinsics: np.ndarray = None, # [3, 3] normalized camera intrinsics matrix of target image
R: np.ndarray = None, # [3, 3] rotation matrix from source to target view
tgt_width: int = None, # target image width in pixels
tgt_height: int = None, # target image height in pixels
):
"Perspective warping with careful resampling."
# First resize the maps to approximately the same pixel size as the target image with PIL's antialiasing resampling
src_horizontal, src_vertical = 1 / src_intrinsics[0, 0], 1 / src_intrinsics[1, 1]
tgt_horizontal, tgt_vertical = 1 / tgt_intrinsics[0, 0], 1 / tgt_intrinsics[1, 1]
tgt_pixel_w, tgt_pixel_h = tgt_horizontal / tgt_width, tgt_vertical / tgt_height # (should be exactly the same for x and y axes)
resized_w, resized_h = int(src_horizontal / tgt_pixel_w), int(src_vertical / tgt_pixel_h)
# resize image
resized_image = np.array(Image.fromarray(src_image).resize((resized_w, resized_h), Image.Resampling.LANCZOS))
# Then warp
transform = src_intrinsics @ np.linalg.inv(R) @ np.linalg.inv(tgt_intrinsics)
uv_tgt = utils3d.numpy.image_uv(width=tgt_width, height=tgt_height)
pts = np.concatenate([uv_tgt, np.ones((tgt_height, tgt_width, 1), dtype=np.float32)], axis=-1) @ transform.T
uv_remap = pts[:, :, :2] / (pts[:, :, 2:3] + 1e-12)
pixel_remap = utils3d.numpy.uv_to_pixel(uv_remap, width=resized_w, height=resized_h).astype(np.float32)
# warp image
try:
tgt_image = cv2.remap(resized_image, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LANCZOS4)
except:
print("cv2.remap error, using nearest instead of lanczos4")
print(pixel_remap[:, :, 0])
print(pixel_remap[:, :, 1])
breakpoint()
return tgt_image
def center_crop_short_side(
img: np.ndarray # [H, W, C] image to be center cropped
):
h, w = img.shape[:2]
short_side = min(h, w)
top = (h - short_side) // 2
left = (w - short_side) // 2
return img[top:top+short_side, left:left+short_side]
def apply_color_augmentation(
src_image: np.ndarray, # [H, W, C] source image to be augmented
brightness: float = 0.3, # brightness adjustment ratio ±
contrast: float = 0.3, # contrast adjustment ratio ±
saturation: float = 0.4, # saturation adjustment ratio ±
hue: float = 0.3, # hue adjustment ratio ± (only effective if preserve_hue=False)
p: float = 0.8, # probability of applying augmentation
preserve_hue: bool = True, # if True, hue remains unchanged
rng: np.random.Generator = None
):
"""
Apply color jitter augmentation to an RGB image using numpy + OpenCV.
Args:
src_image (np.ndarray): Input image, shape [H, W, C], dtype uint8, range [0,255]
brightness (float): Brightness adjustment ratio ±
contrast (float): Contrast adjustment ratio ±
saturation (float): Saturation adjustment ratio ±
hue (float): Hue adjustment ratio ± (only effective if preserve_hue=False)
p (float): Probability of applying augmentation
preserve_hue (bool): If True, hue remains unchanged
Returns:
np.ndarray: Augmented image, shape [H, W, C], dtype uint8
"""
if rng is None:
rng = np.random.default_rng()
img = src_image.astype(np.float32) / 255.0 # normalize to [0, 1]
if rng.random() < p:
# --- brightness ---
delta_brightness = rng.uniform(-brightness, brightness)
img += delta_brightness
img = np.clip(img, 0.0, 1.0)
# --- contrast ---
delta_contrast = rng.uniform(1 - contrast, 1 + contrast)
img = (img - 0.5) * delta_contrast + 0.5
img = np.clip(img, 0.0, 1.0)
# --- convert to HSV for saturation and (optional) hue ---
img_hsv = cv2.cvtColor((img * 255).astype(np.uint8), cv2.COLOR_RGB2HSV).astype(np.float32)
# --- saturation ---
delta_saturation = rng.uniform(1 - saturation, 1 + saturation)
img_hsv[..., 1] *= delta_saturation
img_hsv[..., 1] = np.clip(img_hsv[..., 1], 0, 255)
# --- hue ---
if not preserve_hue:
delta_hue = rng.uniform(-hue, hue) * 180 # OpenCV hue in [0,180]
img_hsv[..., 0] = (img_hsv[..., 0] + delta_hue) % 180
else:
delta_hue = rng.uniform(-0.04, 0.04) * 180 # OpenCV hue in [0,180]
img_hsv[..., 0] = (img_hsv[..., 0] + delta_hue) % 180
# --- convert back to RGB ---
img = cv2.cvtColor(img_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB).astype(np.float32) / 255.0
return (img * 255).astype(np.uint8)
def apply_transform_to_rot(
src_rotation: np.ndarray = None, # [N, 3, 3] rotation matrix
aug_transforms: tuple = None # (tgt_intrinsics, R, M_flip)
):
"Apply perspective transformation and YZ-plane flipping to rotation matrix."
src_rotation = src_rotation.copy() # Ensure we don't modify the original array
if src_rotation.ndim == 2:
src_rotation = src_rotation.reshape(1, 3, 3)
_, R_trans, M_flip = aug_transforms
N = len(src_rotation)
R_trans = R_trans.reshape(1, 3, 3).repeat(N, axis=0) # [N, 3, 3]
M_flip = M_flip.reshape(1, 3, 3).repeat(N, axis=0) # [N, 3, 3]
tgt_rotation = R_trans @ src_rotation @ M_flip
return tgt_rotation
def apply_transform_to_delta_rot(
src_delta_rotation: np.ndarray = None, # [N, 3, 3] delta rotation matrix
aug_transforms: tuple = None # (tgt_intrinsics, R, M_flip)
):
"Apply perspective transformation and YZ-plane flipping to delta rotation matrix."
src_delta_rotation = src_delta_rotation.copy() # Ensure we don't modify the original array
if src_delta_rotation.ndim == 2:
src_delta_rotation = src_delta_rotation.reshape(1, 3, 3)
_, R_trans, _ = aug_transforms
N = len(src_delta_rotation)
R_trans = R_trans.reshape(1, 3, 3).repeat(N, axis=0) # [N, 3, 3]
tgt_delta_rotation = R_trans @ src_delta_rotation @ R_trans.transpose(0, 2, 1)
return tgt_delta_rotation
def apply_transform_to_t(
src_t: np.ndarray = None, # [N, 3] translation vector
aug_transforms: tuple = None # (tgt_intrinsics, R, M_flip)
):
"Apply perspective transformation and YZ-plane flipping to position(translation)."
src_t = src_t.copy() # Ensure we don't modify the original array
if src_t.ndim == 1:
src_t = src_t.reshape(1, 3)
_, R_trans, _ = aug_transforms
tgt_t = (R_trans @ src_t.T).T
return tgt_t
def apply_text_augmentation(
src_text: str = None,
set_none_ratio: float = 0.3, # probability of setting text to None
sub_type: str = None, # 'left' or 'right
rng: np.random.Generator = None
):
"Set text to None with a certain probability for sub_type"
if rng is None:
rng = np.random.default_rng()
tgt_text = copy.deepcopy(src_text)
if rng.random() < set_none_ratio:
left_start = tgt_text.index("Left hand:")
right_start = tgt_text.index("Right hand:")
left_part = tgt_text[left_start:right_start].strip()
right_part = tgt_text[right_start:].strip()
if sub_type == 'left':
left_part = "Left hand: None."
else:
right_part = "Right hand: None."
tgt_text = f"{left_part} {right_part}"
return tgt_text
def apply_transform_to_text(
src_text: str = None, # source text to be transformed
aug_transforms: tuple = None # (tgt_intrinsics, R, M_flip)
):
"Adjust the text for horizontal flips."
_, _, M_flip = aug_transforms
tgt_text = copy.deepcopy(src_text) # Ensure we don't modify the original string
if M_flip[0, 0] < 0: # Check if horizontal flip is applied
tgt_text = tgt_text.replace("upright", "<<placeholder1>>")
tgt_text = tgt_text.replace("leftover", "<<placeholder2>>")
tgt_text = tgt_text.replace("Left", "<<TEMP>>")
tgt_text = tgt_text.replace("Right", "Left")
tgt_text = tgt_text.replace("<<TEMP>>", "Right")
tgt_text = tgt_text.replace("left", "<<TEMP>>")
tgt_text = tgt_text.replace("right", "left")
tgt_text = tgt_text.replace("<<TEMP>>", "right")
left_start = tgt_text.index("Left hand:")
right_start = tgt_text.index("Right hand:")
if left_start < right_start:
left_part = tgt_text[left_start:right_start].strip()
right_part = tgt_text[right_start:].strip()
else:
right_part = tgt_text[right_start:left_start].strip()
left_part = tgt_text[left_start:].strip()
tgt_text = f"{left_part} {right_part}"
tgt_text = tgt_text.replace("<<placeholder1>>", "upright")
tgt_text = tgt_text.replace("<<placeholder2>>", "leftover")
return tgt_text
def project_to_image_space(
joints: np.ndarray, # shape [N, M, 3] where N is number of samples and M is number of joints
intrinsics: np.ndarray, # shape [3, 3] normalized camera intrinsics
render_size: Tuple[int, int] # (height, width) of the target image
):
"Project 3D joints to 2D image space using camera intrinsics."
x = joints[..., 0] # shape [N, M]
y = joints[..., 1] # shape [N, M]
z = joints[..., 2] # shape [N, M]
z = np.clip(z, 0.05, None) # Avoid division by zero
ones = np.ones_like(z) # shape [N, M]
points_normalized = np.stack([x / z, y / z, ones], axis=-1) # shape [N, M, 3]
# Reshape to [N*M, 3] for matrix multiplication
points_normalized_flat = points_normalized.reshape(-1, 3)
points_2d_flat = (intrinsics @ points_normalized_flat.T).T # shape [N*M, 3]
points_2d = points_2d_flat[:, :2].reshape(joints.shape[0], joints.shape[1], 2) # shape [N, M, 2]
# Scale to image size
points_2d[..., 0] *= render_size[1] # width
points_2d[..., 1] *= render_size[0] # height
uv_coords = np.round(points_2d).astype(np.int32)
return uv_coords # shape [N, M, 2]
def shrink_or_expand_bbox_uv(
bbox_uv: np.ndarray, # Array of shape (4,) with [x_min, y_min, x_max, y_max] in normalized [0, 1] coordinates
margin_ratio = 0.0 # Expansion/shrink ratio (positive = expand, negative = shrink)
):
"""
Adjust the size of a bounding box (bbox) in normalized [0, 1] coordinates,
either by expanding or shrinking it, while keeping the center fixed.
- margin_ratio > 0: expand the bbox (i.e., grow outward)
- margin_ratio < 0: shrink the bbox (i.e., contract inward)
- margin_ratio = 0: no change
If expanded bbox exceeds image bounds, it will be clipped to [0, 1].
Args:
bbox_uv (np.ndarray): Array of shape (4,) with [x_min, y_min, x_max, y_max]
in normalized image coordinates.
margin_ratio (float): Expansion/shrink ratio (positive = expand, negative = shrink)
Returns:
np.ndarray: Adjusted bbox in the same [x_min, y_min, x_max, y_max] format
"""
x_min, y_min, x_max, y_max = bbox_uv
cx = (x_min + x_max) / 2.0
cy = (y_min + y_max) / 2.0
orig_w = x_max - x_min
orig_h = y_max - y_min
scale = 1.0 + 2.0 * margin_ratio # >1 for expansion, <1 for shrinking
new_w = orig_w * scale
new_h = orig_h * scale
new_x_min = cx - new_w / 2.0
new_x_max = cx + new_w / 2.0
new_y_min = cy - new_h / 2.0
new_y_max = cy + new_h / 2.0
# Clip to stay within [0, 1] image bounds
new_x_min = max(0.0, new_x_min)
new_y_min = max(0.0, new_y_min)
new_x_max = min(1.0, new_x_max)
new_y_max = min(1.0, new_y_max)
return np.array([new_x_min, new_y_min, new_x_max, new_y_max], dtype=np.float32)
def resolve_valid_range(min_req, max_req, valid_min, valid_max):
" Resolve the requested range [min_req, max_req] within the valid range [valid_min, valid_max]."
if max_req < valid_min:
return valid_min, valid_min
elif min_req > valid_max:
return valid_max, valid_max
else:
return max(min_req, valid_min), min(max_req, valid_max)
def contains_color_word(text: str) -> bool:
color_words = [
'red', 'green', 'blue', 'yellow', 'orange', 'purple', 'pink',
'black', 'white', 'gray', 'grey', 'brown', 'cyan', 'magenta',
'gold', 'silver', 'beige', 'maroon', 'violet', 'indigo', 'turquoise',
'navy', 'olive', 'teal', 'lime', 'ivory', 'bluish', 'reddish'
]
pattern = r'\b(' + '|'.join(color_words) + r')\b'
return re.search(pattern, text, flags=re.IGNORECASE) is not None
def augmentation_func(
image,
intrinsics,
actions,
states,
captions,
uv_traj,
target_size = (224, 224),
augment_params=None,
sub_type=None,
):
"""Apply data augmentation to image, actions, states, and captions.
Performs perspective transformation, rotation, flipping, and color augmentation
while maintaining consistency between image space and action space transformations.
Args:
image: Input image array
intrinsics: Camera intrinsic matrix
actions: Action tuple (action_abs, action_rel, action_mask)
states: State tuple (current_state, current_state_mask)
captions: Text instruction
uv_traj: 2D trajectory for trajectory-aware augmentation
target_size: Target image size after augmentation
augment_params: Dictionary of augmentation parameters
sub_type: Sub-hand type for text augmentation
Returns:
Tuple of augmented (image, intrinsics, actions, states, captions)
"""
if image is not None:
image = image.copy()
intrinsics = intrinsics.copy() # (3,3)
actions = copy.deepcopy(actions)
states = copy.deepcopy(states)
captions = copy.deepcopy(captions)
# normalize intrinsics if not already normalized
intrinsics[0] /= intrinsics[0,2]*2
intrinsics[1] /= intrinsics[1,2]*2
tgt_aspect = augment_params.get('tgt_aspect', 1.0)
margin_ratio = augment_params.get('margin_ratio', 0.05)
center_augmentation = augment_params.get('center_augmentation', 1.0)
fov_range_absolute = augment_params.get('fov_range_absolute', (45, 150))
fov_range_relative = augment_params.get('fov_range_relative', (0.05, 1.0))
inplane_range = augment_params.get('inplane_range', (-np.pi / 6, np.pi / 6))
min_overlap = augment_params.get('min_overlap', 0.95)
flip_augmentation = augment_params.get('flip_augmentation', 1.0)
set_none_ratio = augment_params.get('set_none_ratio', 0.0)
rng = augment_params.get('rng', np.random)
aug_transforms = sample_perspective_rot_flip_with_traj_constraint(
intrinsics,
trajectory_uv = uv_traj,
margin_ratio = margin_ratio,
tgt_aspect = tgt_aspect,
center_augmentation = center_augmentation,
fov_range_absolute = fov_range_absolute,
fov_range_relative = fov_range_relative,
inplane_range = inplane_range,
min_overlap = min_overlap,
flip_augmentation = flip_augmentation,
rng = rng,
)
# transform parameters for augmentation
new_intrinsics, R_trans, M_flip = aug_transforms
# apply the augmentation transform to the image
tgt_width, tgt_height = target_size
if image is not None:
if len(image.shape) == 4:
image = image.squeeze(0)
new_image = warp_perspective(image,
src_intrinsics=intrinsics,
tgt_intrinsics=new_intrinsics,
R = R_trans,
tgt_width=tgt_width,
tgt_height=tgt_height,
)
else:
new_image = None
# unnormalize the intrinsics
new_intrinsics[0] *= tgt_width
new_intrinsics[1] *= tgt_height
# apply the augmentation transform to the actions
action_abs, action_rel, action_mask = actions
action_abs_dim = action_abs.shape[1] # 102 for dual hand
action_rel_dim = action_rel.shape[1] # 102 for dual hand
abs_L = action_abs[:, :action_abs_dim//2] # left hand
abs_R = action_abs[:, action_abs_dim//2:] # right hand
rel_L = action_rel[:, :action_rel_dim//2] # left hand
rel_R = action_rel[:, action_rel_dim//2:] # right hand
msk_L = action_mask[:, 0] # left hand
msk_R = action_mask[:, 1] # right hand
abs_L_t = abs_L[:,:3] # translation
abs_R_t = abs_R[:,:3] # translation
rel_L_t = rel_L[:,:3] # translation
rel_R_t = rel_R[:,:3] # translation
abs_L_rot = R.from_euler('xyz', abs_L[:,3:6]).as_matrix() # rotation
abs_R_rot = R.from_euler('xyz', abs_R[:,3:6]).as_matrix() # rotation
rel_L_rot = R.from_euler('xyz', rel_L[:,3:6]).as_matrix() # rotation
rel_R_rot = R.from_euler('xyz', rel_R[:,3:6]).as_matrix() # rotation
abs_L_hand_pose = abs_L[:,6:] # hand pose
abs_R_hand_pose = abs_R[:,6:] # hand pose
rel_L_hand_pose = rel_L[:,6:] # hand pose
rel_R_hand_pose = rel_R[:,6:] # hand pose
if abs_L_hand_pose.shape[-1] != 45: # hand space keypoints representation in shape (T,N*3), not represented by 45 dim joint angles.
pose_dim = abs_L_hand_pose.shape[-1]
abs_L_hand_pose = abs_L_hand_pose.copy().reshape(-1, 3) #(T*N,3)
abs_L_hand_pose = (M_flip @ abs_L_hand_pose.T).T # apply flip transform
abs_L_hand_pose = abs_L_hand_pose.reshape(-1, pose_dim) # (T,N*3)
if abs_R_hand_pose.shape[-1] != 45: # hand space keypoints representation, not represented by 45 dim joint angles.
pose_dim = abs_R_hand_pose.shape[-1]
abs_R_hand_pose = abs_R_hand_pose.copy().reshape(-1, 3)
abs_R_hand_pose = (M_flip @ abs_R_hand_pose.T).T # apply flip transform
abs_R_hand_pose = abs_R_hand_pose.reshape(-1, pose_dim) # (T,N*3)
if rel_L_hand_pose.shape[-1] != 45: # hand space keypoints representation, not represented by 45 dim joint angles.
pose_dim = rel_L_hand_pose.shape[-1]
rel_L_hand_pose = rel_L_hand_pose.copy().reshape(-1, 3)
rel_L_hand_pose = (M_flip @ rel_L_hand_pose.T).T # apply flip transform
rel_L_hand_pose = rel_L_hand_pose.reshape(-1, pose_dim) # (T,N*3)
if rel_R_hand_pose.shape[-1] != 45: # hand space keypoints representation, not represented by 45 dim joint angles.
pose_dim = rel_R_hand_pose.shape[-1]
rel_R_hand_pose = rel_R_hand_pose.copy().reshape(-1, 3)
rel_R_hand_pose = (M_flip @ rel_R_hand_pose.T).T # apply flip transform
rel_R_hand_pose = rel_R_hand_pose.reshape(-1, pose_dim) # (T,N*3)
abs_L_t = apply_transform_to_t(abs_L_t, aug_transforms) # apply transform
abs_R_t = apply_transform_to_t(abs_R_t, aug_transforms) # apply transform
rel_L_t = apply_transform_to_t(rel_L_t, aug_transforms) # apply transform
rel_R_t = apply_transform_to_t(rel_R_t, aug_transforms) # apply transform
abs_L_rot = apply_transform_to_rot(abs_L_rot, aug_transforms) # apply transform
abs_R_rot = apply_transform_to_rot(abs_R_rot, aug_transforms) # apply transform
rel_L_rot = apply_transform_to_delta_rot(rel_L_rot, aug_transforms) # apply transform
rel_R_rot = apply_transform_to_delta_rot(rel_R_rot, aug_transforms) # apply transform
abs_L_rot_xyz = R.from_matrix(abs_L_rot).as_euler('xyz', degrees=False) # rotation as euler angles
abs_R_rot_xyz = R.from_matrix(abs_R_rot).as_euler('xyz', degrees=False) # rotation as euler angles
rel_L_rot_xyz = R.from_matrix(rel_L_rot).as_euler('xyz', degrees=False) # rotation as euler angles
rel_R_rot_xyz = R.from_matrix(rel_R_rot).as_euler('xyz', degrees=False) # rotation as euler angles
new_abs_L = np.concatenate([abs_L_t, abs_L_rot_xyz, abs_L_hand_pose], axis=1)
new_abs_R = np.concatenate([abs_R_t, abs_R_rot_xyz, abs_R_hand_pose], axis=1)
new_rel_L = np.concatenate([rel_L_t, rel_L_rot_xyz, rel_L_hand_pose], axis=1)
new_rel_R = np.concatenate([rel_R_t, rel_R_rot_xyz, rel_R_hand_pose], axis=1)
if M_flip[0,0] < 0:
# flip the left hand to right hand
new_abs_L, new_abs_R = new_abs_R, new_abs_L
new_rel_L, new_rel_R = new_rel_R, new_rel_L
msk_L, msk_R = msk_R, msk_L
new_action_abs = np.concatenate([new_abs_L, new_abs_R], axis=1) # (W,102)
new_action_rel = np.concatenate([new_rel_L, new_rel_R], axis=1) # (W,102)
new_action_mask = np.stack([msk_L, msk_R], axis=1) # (W,2)
# randomly set sub_type hand text to None for single hand training
captions = apply_text_augmentation(captions, set_none_ratio=set_none_ratio, sub_type=sub_type, rng=rng)
# apply the augmentation transform to the captions
new_captions = apply_transform_to_text(captions, aug_transforms)
# color augmentation
if contains_color_word(captions):
preserve_hue = True
else:
preserve_hue = False
if new_image is not None:
new_image = apply_color_augmentation(new_image, preserve_hue=preserve_hue)
new_image = new_image[None,...]
# apply the augmentation transform to the states
current_state, current_state_mask = states
state_dim = current_state.shape[0]
cur_L = current_state[:state_dim//2] # left hand
cur_R = current_state[state_dim//2:] # right hand
msk_L = current_state_mask[0] # left hand
msk_R = current_state_mask[1] # right hand
cur_L_t = cur_L[:3] # translation
cur_R_t = cur_R[:3] # translation
cur_L_rot = R.from_euler('xyz', cur_L[3:6]).as_matrix() # rotation
cur_R_rot = R.from_euler('xyz', cur_R[3:6]).as_matrix() # rotation
cur_L_hand_pose = cur_L[6:-10] # hand pose
cur_R_hand_pose = cur_R[6:-10] # hand pose
cur_L_beta = cur_L[-10:] # beta
cur_R_beta = cur_R[-10:] # beta
if cur_L_hand_pose.shape[-1] != 45: # hand space keypoints representation (N*3), not represented by 45 dim joint angles.
cur_L_hand_pose = cur_L_hand_pose.copy().reshape(-1, 3)
cur_L_hand_pose = (M_flip @ cur_L_hand_pose.T).T # apply flip transform
cur_L_hand_pose = cur_L_hand_pose.reshape(-1) # flatten back to 1D
if cur_R_hand_pose.shape[-1] != 45: # hand space keypoints representation, not represented by 45 dim joint angles.
cur_R_hand_pose = cur_R_hand_pose.copy().reshape(-1, 3)
cur_R_hand_pose = (M_flip @ cur_R_hand_pose.T).T # apply flip transform
cur_R_hand_pose = cur_R_hand_pose.reshape(-1)
cur_L_t = apply_transform_to_t(cur_L_t, aug_transforms).squeeze(0) # apply transform
cur_R_t = apply_transform_to_t(cur_R_t, aug_transforms).squeeze(0) # apply transform
cur_L_rot = apply_transform_to_rot(cur_L_rot, aug_transforms).squeeze(0) # apply transform
cur_R_rot = apply_transform_to_rot(cur_R_rot, aug_transforms).squeeze(0) # apply transform
cur_L_rot_xyz = R.from_matrix(cur_L_rot).as_euler('xyz', degrees=False) # rotation as euler angles
cur_R_rot_xyz = R.from_matrix(cur_R_rot).as_euler('xyz', degrees=False) # rotation as euler angles
new_cur_L = np.concatenate([cur_L_t, cur_L_rot_xyz, cur_L_hand_pose, cur_L_beta], axis=0)
new_cur_R = np.concatenate([cur_R_t, cur_R_rot_xyz, cur_R_hand_pose, cur_R_beta], axis=0)
if M_flip[0,0] < 0:
# flip the left hand to right hand
new_cur_L, new_cur_R = new_cur_R, new_cur_L
msk_L, msk_R = msk_R, msk_L
new_current_state = np.concatenate([new_cur_L, new_cur_R]) # (102,)
new_current_state_mask = np.array([msk_L, msk_R])
return new_image, \
new_intrinsics, \
(new_action_abs, new_action_rel, new_action_mask), \
(new_current_state, new_current_state_mask), \
new_captions
if __name__ == "__main__":
# Example usage
image = np.random.rand(480, 640, 3) * 255 # Dummy image
image = image.astype(np.uint8)
translations = np.random.rand(10, 3) # Dummy translations
rotations = np.random.rand(10, 3, 3) # Dummy rotations
delta_rations = np.random.rand(10, 3, 3) # Dummy delta rotations
text = "Right: This is a sample text for augmentation."
src_intrinsics = np.array([[1.0, 0.0, 0.5],
[0.0, 1.0, 0.5],
[0.0, 0.0, 1.0]], dtype=np.float32)
# Example parameters
tgt_aspect = 1.0
trajectory_uv = np.array([[0.2, 0.2], [0.8, 0.8]], dtype=np.float32)
margin_ratio = 0.05
center_augmentation = 1.0
fov_range_absolute = (30, 150)
fov_range_relative = (0.05, 1.0)
inplane_range = (-np.pi / 4, np.pi / 4)
min_overlap = 0.9
flip_augmentation = 1.0
rng = np.random.default_rng(42)
# Apply perspective rotation and flip augmentation
new_intrinsics, R_trans, M_flip = sample_perspective_rot_flip_with_traj_constraint(
src_intrinsics,
tgt_aspect = tgt_aspect,
trajectory_uv = trajectory_uv,
margin_ratio = margin_ratio,
center_augmentation = center_augmentation,
fov_range_absolute = fov_range_absolute,
fov_range_relative = fov_range_relative,
inplane_range = inplane_range,
min_overlap = min_overlap,
flip_augmentation = flip_augmentation,
rng = rng,
)
aug_transforms = (new_intrinsics, R_trans, M_flip)
# Warp the image using the computed transformations
new_image = warp_perspective(
src_image = image,
src_intrinsics = src_intrinsics,
tgt_intrinsics = new_intrinsics,
R = R_trans,
tgt_width = 224,
tgt_height = 224,
)
# Apply color augmentation
if contains_color_word(text):
preserve_hue = True
else:
preserve_hue = False
new_image = apply_color_augmentation(new_image, preserve_hue=preserve_hue)
# Apply transformations to translations, rotations, and delta rotations
new_translations = apply_transform_to_t(
src_t = translations,
aug_transforms = aug_transforms
)
new_rotations = apply_transform_to_rot(
src_rotation = rotations,
aug_transforms = aug_transforms
)
new_delta_rotations = apply_transform_to_delta_rot(
src_delta_rotation = delta_rations,
aug_transforms = aug_transforms
)
new_text = apply_transform_to_text(
src_text = text,
aug_transforms = aug_transforms
)
print("New Intrinsics:\n", new_intrinsics)
print("Transformed Image Shape:", new_image.shape)
print("Text after transformation:", new_text)
print("Done") |