import os import gc import gradio as gr import numpy as np import spaces import torch import random from PIL import Image from typing import Iterable from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes colors.orange_red = colors.Color( name="orange_red", c50="#FFF0E5", c100="#FFE0CC", c200="#FFC299", c300="#FFA366", c400="#FF8533", c500="#FF4500", c600="#E63E00", c700="#CC3700", c800="#B33000", c900="#992900", c950="#802200", ) class OrangeRedTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.orange_red, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", button_secondary_text_color="black", button_secondary_text_color_hover="white", button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) orange_red_theme = OrangeRedTheme() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) print("torch.__version__ =", torch.__version__) print("torch.version.cuda =", torch.version.cuda) print("cuda available:", torch.cuda.is_available()) print("cuda device count:", torch.cuda.device_count()) if torch.cuda.is_available(): print("current device:", torch.cuda.current_device()) print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) print("Using device:", device) from diffusers import FlowMatchEulerDiscreteScheduler from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 dtype = torch.bfloat16 pipe = QwenImageEditPlusPipeline.from_pretrained( "Qwen/Qwen-Image-Edit-2511", transformer=QwenImageTransformer2DModel.from_pretrained( "linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map='cuda' ), torch_dtype=dtype ).to(device) try: pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) print("Flash Attention 3 Processor set successfully.") except Exception as e: print(f"Warning: Could not set FA3 processor: {e}") MAX_SEED = np.iinfo(np.int32).max ADAPTER_SPECS = { "Multiple-Angles": { "repo": "dx8152/Qwen-Edit-2509-Multiple-angles", "weights": "镜头转换.safetensors", "adapter_name": "multiple-angles" } } LOADED_ADAPTERS = set() def update_dimensions_on_upload(image): if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 aspect_ratio = original_height / original_width new_height = int(new_width * aspect_ratio) else: new_height = 1024 aspect_ratio = original_width / original_height new_width = int(new_height * aspect_ratio) new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height @spaces.GPU def infer( input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True) ): gc.collect() torch.cuda.empty_cache() if input_image is None: raise gr.Error("Please upload an image to edit.") spec = ADAPTER_SPECS.get(lora_adapter) if not spec: raise gr.Error(f"Configuration not found for: {lora_adapter}") adapter_name = spec["adapter_name"] if adapter_name not in LOADED_ADAPTERS: print(f"--- Downloading and Loading Adapter: {lora_adapter} ---") try: pipe.load_lora_weights( spec["repo"], weight_name=spec["weights"], adapter_name=adapter_name ) LOADED_ADAPTERS.add(adapter_name) except Exception as e: raise gr.Error(f"Failed to load adapter {lora_adapter}: {e}") else: print(f"--- Adapter {lora_adapter} is already loaded. ---") pipe.set_adapters([adapter_name], adapter_weights=[1.0]) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry" original_image = input_image.convert("RGB") width, height = update_dimensions_on_upload(original_image) try: result = pipe( image=original_image, prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, generator=generator, true_cfg_scale=guidance_scale, ).images[0] return result, seed except Exception as e: raise e finally: gc.collect() torch.cuda.empty_cache() @spaces.GPU def infer_example(input_image, prompt, lora_adapter): if input_image is None: return None, 0 input_pil = input_image.convert("RGB") guidance_scale = 1.0 steps = 4 result, seed = infer(input_pil, prompt, lora_adapter, 0, True, guidance_scale, steps) return result, seed css=""" #col-container { margin: 0 auto; max-width: 960px; } #main-title h1 {font-size: 2.1em !important;} """ with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# **Qwen-Image-Edit-2511-LoRA-Fast**", elem_id="main-title") gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2511) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2511) model.") with gr.Row(equal_height=True): with gr.Column(): input_image = gr.Image(label="Upload Image", type="pil", height=290) prompt = gr.Text( label="Edit Prompt", show_label=True, placeholder="e.g., transform into anime..", ) run_button = gr.Button("Edit Image", variant="primary") with gr.Column(): output_image = gr.Image(label="Output Image", interactive=False, format="png", height=353) with gr.Row(): lora_adapter = gr.Dropdown( label="Choose Editing Style", choices=list(ADAPTER_SPECS.keys()), value="Multiple-Angles" ) with gr.Accordion("Advanced Settings", open=False, visible=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4) gr.Examples( examples=[ ["examples/A.jpeg", "Rotate the camera 45 degrees to the right.", "Multiple-Angles"], ], inputs=[input_image, prompt, lora_adapter], outputs=[output_image, seed], fn=infer_example, cache_examples=False, label="Examples" ) gr.Markdown("[*](https://huggingface.co/spaces/prithivMLmods/Qwen-Image-Edit-2511-LoRAs-Fast)This is still an experimental Space for Qwen-Image-Edit-2511; you can use [Qwen-Image-Edit-2509-LoRAs-Fast](https://huggingface.co/spaces/prithivMLmods/Qwen-Image-Edit-2509-LoRAs-Fast) instead. This Space will be updated soon.") run_button.click( fn=infer, inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], outputs=[output_image, seed] ) if __name__ == "__main__": demo.queue(max_size=30).launch(css=css, theme=orange_red_theme, mcp_server=True, ssr_mode=False, show_error=True)