|
|
import gradio as gr |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
|
|
|
MODEL_ID = "Qwen/Qwen2.5-Coder-1.5B-Instruct" |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32) |
|
|
model.to(device) |
|
|
|
|
|
def generate(prompt): |
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
|
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.2) |
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
demo = gr.Interface(fn=generate, inputs="text", outputs="text") |
|
|
demo.launch() |