File size: 8,522 Bytes
93b6fc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
from PIL import Image
import numpy as np
import onnxruntime as ort
import json
from huggingface_hub import hf_hub_download


class NSFWDetector:
    """
    NSFW detector using YOLOv9 for image classification.
    """
    
    def __init__(self, repo_id="Falconsai/nsfw_image_detection", 
                 model_filename="falconsai_yolov9_nsfw_model_quantized.pt",
                 labels_filename="labels.json",
                 input_size=(224, 224)):
        """
        Initialize the NSFW detector.
        
        Args:
            repo_id (str): Hugging Face repository ID.
            model_filename (str): Model filename.
            labels_filename (str): Labels filename.
            input_size (tuple): Model input size (height, width).
        """
        self.repo_id = repo_id
        self.model_filename = model_filename
        self.labels_filename = labels_filename
        self.input_size = input_size
        
        # Download files from Hugging Face
        self.model_path = self._download_model()
        self.labels_path = self._download_labels()
        
        # Load labels
        self.labels = self._load_labels()
        
        # Load model
        self.session = self._load_model()
        self.input_name = self.session.get_inputs()[0].name
        self.output_name = self.session.get_outputs()[0].name
        
    def _download_model(self):
        """
        Download the model file from Hugging Face.
        
        Returns:
            str: Path to the downloaded model file.
        """
        try:
            print(f"Downloading model from {self.repo_id}: {self.model_filename}")
            model_path = hf_hub_download(
                repo_id=self.repo_id,
                filename=self.model_filename,
                cache_dir="./hf_cache"
            )
            print(f"✅ Model downloaded: {model_path}")
            return model_path
        except Exception as e:
            raise RuntimeError(f"Model download failed: {e}")
    
    def _download_labels(self):
        """
        Download the labels file from Hugging Face.
        
        Returns:
            str: Path to the downloaded labels file.
        """
        try:
            print(f"Downloading labels from {self.repo_id}: {self.labels_filename}")
            labels_path = hf_hub_download(
                repo_id=self.repo_id,
                filename=self.labels_filename,
                cache_dir="./hf_cache"
            )
            print(f"✅ Labels downloaded: {labels_path}")
            return labels_path
        except Exception as e:
            raise RuntimeError(f"Labels download failed: {e}")
    
    def _load_labels(self):
        """
        Load class labels.
        
        Returns:
            dict: Labels dictionary.
        """
        try:
            with open(self.labels_path, "r") as f:
                return json.load(f)
        except FileNotFoundError:
            raise FileNotFoundError(f"Labels file not found: {self.labels_path}")
        except json.JSONDecodeError:
            raise ValueError(f"Labels file is malformed: {self.labels_path}")
    
    def _load_model(self):
        """
        Load ONNX model.
        
        Returns:
            onnxruntime.InferenceSession: Model session.
        """
        try:
            return ort.InferenceSession(self.model_path)
        except Exception as e:
            raise RuntimeError(f"Model load failed: {self.model_path}, error: {e}")
    
    def _preprocess_image(self, image_path):
        """
        Preprocess image.
        
        Args:
            image_path (str): Image file path.
            
        Returns:
            tuple: (preprocessed tensor, original image)
        """
        try:
            # Load and convert image
            original_image = Image.open(image_path).convert("RGB")
            
            # Resize
            image_resized = original_image.resize(self.input_size, Image.Resampling.BILINEAR)
            
            # To numpy and normalize
            image_np = np.array(image_resized, dtype=np.float32) / 255.0
            
            # Reorder dims [H, W, C] -> [C, H, W]
            image_np = np.transpose(image_np, (2, 0, 1))
            
            # Add batch dim [C, H, W] -> [1, C, H, W]
            input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32)
            
            return input_tensor, original_image
            
        except FileNotFoundError:
            raise FileNotFoundError(f"Image file not found: {image_path}")
        except Exception as e:
            raise RuntimeError(f"Image preprocessing failed: {e}")
    
    def _postprocess_predictions(self, predictions):
        """
        Postprocess model predictions.
        
        Args:
            predictions: Model output.
            
        Returns:
            str: Predicted class label.
        """
        predicted_index = np.argmax(predictions)
        predicted_label = self.labels[str(predicted_index)]
        return predicted_label
    
    def predict(self, image_path):
        """
        Run NSFW detection on a single image.
        
        Args:
            image_path (str): Image file path.
            
        Returns:
            tuple: (predicted label, original image)
        """
        # Preprocess image
        input_tensor, original_image = self._preprocess_image(image_path)
        
        # Run inference
        outputs = self.session.run([self.output_name], {self.input_name: input_tensor})
        predictions = outputs[0]
        
        # Postprocess
        predicted_label = self._postprocess_predictions(predictions)
        
        return predicted_label, original_image
    
    def predict_label_only(self, image_path):
        """
        Return only the predicted label (no image).
        
        Args:
            image_path (str): Image file path.
            
        Returns:
            str: Predicted class label.
        """
        predicted_label, _ = self.predict(image_path)
        return predicted_label
    
    def predict_from_pil(self, pil_image):
        """
        Run NSFW detection from a PIL Image object.
        
        Args:
            pil_image (PIL.Image): PIL image object.
            
        Returns:
            tuple: (predicted label, original image)
        """
        try:
            # Ensure RGB
            if pil_image.mode != "RGB":
                pil_image = pil_image.convert("RGB")
            
            # Resize
            image_resized = pil_image.resize(self.input_size, Image.Resampling.BILINEAR)
            
            # To numpy and normalize
            image_np = np.array(image_resized, dtype=np.float32) / 255.0
            
            # Reorder dims [H, W, C] -> [C, H, W]
            image_np = np.transpose(image_np, (2, 0, 1))
            
            # Add batch dim [C, H, W] -> [1, C, H, W]
            input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32)
            
            # Run inference
            outputs = self.session.run([self.output_name], {self.input_name: input_tensor})
            predictions = outputs[0]
            
            # Postprocess
            predicted_label = self._postprocess_predictions(predictions)
            
            return predicted_label, pil_image
            
        except Exception as e:
            raise RuntimeError(f"PIL image prediction failed: {e}")
    
    def predict_pil_label_only(self, pil_image):
        """
        Return only the predicted label from a PIL Image.
        
        Args:
            pil_image (PIL.Image): PIL image object.
            
        Returns:
            str: Predicted class label.
        """
        predicted_label, _ = self.predict_from_pil(pil_image)
        return predicted_label

# --- Usage example ---
if __name__ == "__main__":
    # Config
    single_image_path = "datas/bad01.jpg"
    
    try:
        # Create detector (auto-download from Hugging Face)
        detector = NSFWDetector()
        
        # Check image file exists
        if os.path.exists(single_image_path):
            # Run prediction
            predicted_label = detector.predict_label_only(single_image_path)
            print(f"Image file: {single_image_path}")
            print(f"Prediction: {predicted_label}")
        else:
            print(f"Error: Image file does not exist: {single_image_path}")
            
    except Exception as e:
        print(f"Error initializing detector: {e}")