omarkamali commited on
Commit
022916d
·
verified ·
1 Parent(s): cb0c24c

Upload all models and assets for chy (20251201)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. README.md +553 -0
  3. models/embeddings/monolingual/chy_128d.bin +3 -0
  4. models/embeddings/monolingual/chy_128d.meta.json +1 -0
  5. models/embeddings/monolingual/chy_128d_metadata.json +13 -0
  6. models/embeddings/monolingual/chy_32d.bin +3 -0
  7. models/embeddings/monolingual/chy_32d.meta.json +1 -0
  8. models/embeddings/monolingual/chy_32d_metadata.json +13 -0
  9. models/embeddings/monolingual/chy_64d.bin +3 -0
  10. models/embeddings/monolingual/chy_64d.meta.json +1 -0
  11. models/embeddings/monolingual/chy_64d_metadata.json +13 -0
  12. models/subword_markov/chy_markov_ctx1_subword.parquet +3 -0
  13. models/subword_markov/chy_markov_ctx1_subword_metadata.json +7 -0
  14. models/subword_markov/chy_markov_ctx2_subword.parquet +3 -0
  15. models/subword_markov/chy_markov_ctx2_subword_metadata.json +7 -0
  16. models/subword_markov/chy_markov_ctx3_subword.parquet +3 -0
  17. models/subword_markov/chy_markov_ctx3_subword_metadata.json +7 -0
  18. models/subword_markov/chy_markov_ctx4_subword.parquet +3 -0
  19. models/subword_markov/chy_markov_ctx4_subword_metadata.json +7 -0
  20. models/subword_ngram/chy_2gram_subword.parquet +3 -0
  21. models/subword_ngram/chy_2gram_subword_metadata.json +7 -0
  22. models/subword_ngram/chy_3gram_subword.parquet +3 -0
  23. models/subword_ngram/chy_3gram_subword_metadata.json +7 -0
  24. models/subword_ngram/chy_4gram_subword.parquet +3 -0
  25. models/subword_ngram/chy_4gram_subword_metadata.json +7 -0
  26. models/tokenizer/chy_tokenizer_16k.model +3 -0
  27. models/tokenizer/chy_tokenizer_16k.vocab +0 -0
  28. models/tokenizer/chy_tokenizer_8k.model +3 -0
  29. models/tokenizer/chy_tokenizer_8k.vocab +0 -0
  30. models/vocabulary/chy_vocabulary.parquet +3 -0
  31. models/vocabulary/chy_vocabulary_metadata.json +14 -0
  32. models/word_markov/chy_markov_ctx1_word.parquet +3 -0
  33. models/word_markov/chy_markov_ctx1_word_metadata.json +7 -0
  34. models/word_markov/chy_markov_ctx2_word.parquet +3 -0
  35. models/word_markov/chy_markov_ctx2_word_metadata.json +7 -0
  36. models/word_markov/chy_markov_ctx3_word.parquet +3 -0
  37. models/word_markov/chy_markov_ctx3_word_metadata.json +7 -0
  38. models/word_markov/chy_markov_ctx4_word.parquet +3 -0
  39. models/word_markov/chy_markov_ctx4_word_metadata.json +7 -0
  40. models/word_ngram/chy_2gram_word.parquet +3 -0
  41. models/word_ngram/chy_2gram_word_metadata.json +7 -0
  42. models/word_ngram/chy_3gram_word.parquet +3 -0
  43. models/word_ngram/chy_3gram_word_metadata.json +7 -0
  44. models/word_ngram/chy_4gram_word.parquet +3 -0
  45. models/word_ngram/chy_4gram_word_metadata.json +7 -0
  46. visualizations/embedding_isotropy.png +0 -0
  47. visualizations/embedding_norms.png +0 -0
  48. visualizations/embedding_similarity.png +3 -0
  49. visualizations/markov_branching.png +0 -0
  50. visualizations/markov_contexts.png +0 -0
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ visualizations/embedding_similarity.png filter=lfs diff=lfs merge=lfs -text
37
+ visualizations/performance_dashboard.png filter=lfs diff=lfs merge=lfs -text
38
+ visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
39
+ visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
40
+ visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: chy
3
+ language_name: CHY
4
+ language_family: american_algonquian
5
+ tags:
6
+ - wikilangs
7
+ - nlp
8
+ - tokenizer
9
+ - embeddings
10
+ - n-gram
11
+ - markov
12
+ - wikipedia
13
+ - monolingual
14
+ - family-american_algonquian
15
+ license: mit
16
+ library_name: wikilangs
17
+ pipeline_tag: feature-extraction
18
+ datasets:
19
+ - omarkamali/wikipedia-monthly
20
+ dataset_info:
21
+ name: wikipedia-monthly
22
+ description: Monthly snapshots of Wikipedia articles across 300+ languages
23
+ metrics:
24
+ - name: best_compression_ratio
25
+ type: compression
26
+ value: 3.456
27
+ - name: best_isotropy
28
+ type: isotropy
29
+ value: 0.0028
30
+ - name: vocabulary_size
31
+ type: vocab
32
+ value: 1659
33
+ generated: 2025-12-28
34
+ ---
35
+
36
+ # CHY - Wikilangs Models
37
+ ## Comprehensive Research Report & Full Ablation Study
38
+
39
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **CHY** Wikipedia data.
40
+ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
41
+
42
+ ## 📋 Repository Contents
43
+
44
+ ### Models & Assets
45
+
46
+ - Tokenizers (8k, 16k, 32k, 64k)
47
+ - N-gram models (2, 3, 4-gram)
48
+ - Markov chains (context of 1, 2, 3 and 4)
49
+ - Subword N-gram and Markov chains
50
+ - Embeddings in various sizes and dimensions
51
+ - Language Vocabulary
52
+ - Language Statistics
53
+ ![Performance Dashboard](visualizations/performance_dashboard.png)
54
+
55
+ ### Analysis and Evaluation
56
+
57
+ - [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
58
+ - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
59
+ - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
60
+ - [4. Vocabulary Analysis](#4-vocabulary-analysis)
61
+ - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
62
+ - [6. Summary & Recommendations](#6-summary--recommendations)
63
+ - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
64
+ - [Visualizations Index](#visualizations-index)
65
+
66
+ ---
67
+ ## 1. Tokenizer Evaluation
68
+
69
+ ![Tokenizer Compression](visualizations/tokenizer_compression.png)
70
+
71
+ ### Results
72
+
73
+ | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
74
+ |------------|-------------|---------------|----------|--------------|
75
+ | **8k** | 3.426x | 3.37 | 0.0811% | 33,276 |
76
+ | **16k** | 3.456x 🏆 | 3.40 | 0.0819% | 32,987 |
77
+
78
+ ### Tokenization Examples
79
+
80
+ Below are sample sentences tokenized with each vocabulary size:
81
+
82
+ **Sample 1:** `Môxéhéó'o (vé'ho'énêstsestôtse: broom, "sweeping [thing]") Pl: môxéheonôtse.
83
+
84
+
85
+ C...`
86
+
87
+ | Vocab | Tokens | Count |
88
+ |-------|--------|-------|
89
+ | 8k | `▁môxéhéó ' o ▁( vé ' ho ' énêstsestôtse : ... (+18 more)` | 28 |
90
+ | 16k | `▁môxéhéó ' o ▁( vé ' ho ' énêstsestôtse : ... (+17 more)` | 27 |
91
+
92
+ **Sample 2:** `Brazil, na'éstse ho'e-éve, Amérika.
93
+
94
+ Category:Brazil`
95
+
96
+ | Vocab | Tokens | Count |
97
+ |-------|--------|-------|
98
+ | 8k | `▁brazil , ▁na ' éstse ▁ho ' e - éve ... (+6 more)` | 16 |
99
+ | 16k | `▁brazil , ▁na ' éstse ▁ho ' e - éve ... (+6 more)` | 16 |
100
+
101
+ **Sample 3:** `Boise, na'éstse manâhéno, Idaho.
102
+
103
+ Category:Mâhoestôtse`
104
+
105
+ | Vocab | Tokens | Count |
106
+ |-------|--------|-------|
107
+ | 8k | `▁boise , ▁na ' éstse ▁manâhéno , ▁idaho . ▁category ... (+2 more)` | 12 |
108
+ | 16k | `▁boise , ▁na ' éstse ▁manâhéno , ▁idaho . ▁category ... (+2 more)` | 12 |
109
+
110
+
111
+ ### Key Findings
112
+
113
+ - **Best Compression:** 16k achieves 3.456x compression
114
+ - **Lowest UNK Rate:** 8k with 0.0811% unknown tokens
115
+ - **Trade-off:** Larger vocabularies improve compression but increase model size
116
+ - **Recommendation:** 32k vocabulary provides optimal balance for production use
117
+
118
+ ---
119
+ ## 2. N-gram Model Evaluation
120
+
121
+ ![N-gram Perplexity](visualizations/ngram_perplexity.png)
122
+
123
+ ![N-gram Coverage](visualizations/ngram_coverage.png)
124
+
125
+ ### Results
126
+
127
+ | N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
128
+ |--------|------------|---------|----------------|------------------|-------------------|
129
+ | **2-gram** | 237 🏆 | 7.89 | 654 | 65.5% | 100.0% |
130
+ | **2-gram** | 360 🏆 | 8.49 | 1,127 | 58.7% | 99.4% |
131
+ | **3-gram** | 533 | 9.06 | 1,211 | 49.6% | 95.0% |
132
+ | **3-gram** | 1,561 | 10.61 | 4,876 | 32.9% | 74.3% |
133
+ | **4-gram** | 1,077 | 10.07 | 2,302 | 37.1% | 77.9% |
134
+ | **4-gram** | 3,419 | 11.74 | 11,151 | 25.8% | 57.5% |
135
+
136
+ ### Top 5 N-grams by Size
137
+
138
+ **2-grams:**
139
+
140
+ | Rank | N-gram | Count |
141
+ |------|--------|-------|
142
+ | 1 | `category :` | 973 |
143
+ | 2 | `' e` | 663 |
144
+ | 3 | `ho '` | 511 |
145
+ | 4 | `' o` | 391 |
146
+ | 5 | `. category` | 332 |
147
+
148
+ **3-grams:**
149
+
150
+ | Rank | N-gram | Count |
151
+ |------|--------|-------|
152
+ | 1 | `. category :` | 331 |
153
+ | 2 | `na ' éstse` | 288 |
154
+ | 3 | `' ho '` | 225 |
155
+ | 4 | `| thumb |` | 204 |
156
+ | 5 | `| right |` | 201 |
157
+
158
+ **4-grams:**
159
+
160
+ | Rank | N-gram | Count |
161
+ |------|--------|-------|
162
+ | 1 | `, na ' éstse` | 199 |
163
+ | 2 | `| thumb | right` | 167 |
164
+ | 3 | `thumb | right |` | 155 |
165
+ | 4 | `vé ' ho '` | 131 |
166
+ | 5 | `300px | thumb |` | 128 |
167
+
168
+
169
+ ### Key Findings
170
+
171
+ - **Best Perplexity:** 2-gram with 237
172
+ - **Entropy Trend:** Decreases with larger n-grams (more predictable)
173
+ - **Coverage:** Top-1000 patterns cover ~58% of corpus
174
+ - **Recommendation:** 4-gram or 5-gram for best predictive performance
175
+
176
+ ---
177
+ ## 3. Markov Chain Evaluation
178
+
179
+ ![Markov Entropy](visualizations/markov_entropy.png)
180
+
181
+ ![Markov Branching](visualizations/markov_branching.png)
182
+
183
+ ### Results
184
+
185
+ | Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
186
+ |---------|-------------|------------|------------------|-----------------|----------------|
187
+ | **1** | 0.3489 | 1.274 | 2.42 | 4,255 | 65.1% |
188
+ | **1** | 1.3997 | 2.638 | 10.97 | 189 | 0.0% |
189
+ | **2** | 0.1560 | 1.114 | 1.36 | 10,197 | 84.4% |
190
+ | **2** | 1.2345 | 2.353 | 5.27 | 2,073 | 0.0% |
191
+ | **3** | 0.0936 | 1.067 | 1.18 | 13,745 | 90.6% |
192
+ | **3** | 0.6401 | 1.558 | 2.32 | 10,919 | 36.0% |
193
+ | **4** | 0.0555 🏆 | 1.039 | 1.10 | 16,004 | 94.5% |
194
+ | **4** | 0.2796 🏆 | 1.214 | 1.44 | 25,260 | 72.0% |
195
+
196
+ ### Generated Text Samples
197
+
198
+ Below are text samples generated from each Markov chain model:
199
+
200
+ **Context Size 1:**
201
+
202
+ 1. `' konénėhesó - éve . manâhestôtse 7 heše ' tavö ' éhoo ' he tsénėxhésemé '`
203
+ 2. `, na ' he tsénėxhésemé ' evo ' éno ' e 1904 , na ' otsenáhkohe`
204
+ 3. `: turkey , na ' o tsétsêhéstâhese - éve . gus . curitiba - éve .`
205
+
206
+ **Context Size 2:**
207
+
208
+ 1. `category : ó ' he ( vé ' ho ' énestse 71 , 740 6 , 418`
209
+ 2. `' e 300px | thumb | amâho ' hestôtse amêške tsémo ' ôhtávoome amâho ' hestôtse category`
210
+ 3. `ho ' xó ' mâhoéve ' ho ' énêstsestôtse : purgatoire river , picketwire river ) -`
211
+
212
+ **Context Size 3:**
213
+
214
+ 1. `. category : mâhoestôtse category : california`
215
+ 2. `na ' éstse ho ' e - éve hóxovê - hooma , asia ) . *`
216
+ 3. `' ho ' e - éve , meško . category : mâhoestôtse category : ho ' honáeo '`
217
+
218
+ **Context Size 4:**
219
+
220
+ 1. `, na ' éstse ho ' e - éve , amérika . *`
221
+ 2. `| thumb | right | hóxeeséeto ' hamestôtse 300px | thumb | right | méstaa ' êhéhe category :`
222
+ 3. `thumb | right | hotóhkeo ' o tsénésôhtôxese 300px | thumb | right | mámaa ' e mámaa '`
223
+
224
+
225
+ ### Key Findings
226
+
227
+ - **Best Predictability:** Context-4 with 94.5% predictability
228
+ - **Branching Factor:** Decreases with context size (more deterministic)
229
+ - **Memory Trade-off:** Larger contexts require more storage (25,260 contexts)
230
+ - **Recommendation:** Context-3 or Context-4 for text generation
231
+
232
+ ---
233
+ ## 4. Vocabulary Analysis
234
+
235
+ ![Zipf's Law](visualizations/zipf_law.png)
236
+
237
+ ![Top Words](visualizations/top20_words.png)
238
+
239
+ ![Coverage Curve](visualizations/vocab_coverage.png)
240
+
241
+ ### Statistics
242
+
243
+ | Metric | Value |
244
+ |--------|-------|
245
+ | Vocabulary Size | 1,659 |
246
+ | Total Tokens | 14,360 |
247
+ | Mean Frequency | 8.66 |
248
+ | Median Frequency | 3 |
249
+ | Frequency Std Dev | 38.60 |
250
+
251
+ ### Most Common Words
252
+
253
+ | Rank | Word | Frequency |
254
+ |------|------|-----------|
255
+ | 1 | category | 974 |
256
+ | 2 | e | 690 |
257
+ | 3 | ho | 531 |
258
+ | 4 | o | 414 |
259
+ | 5 | na | 293 |
260
+ | 6 | éstse | 288 |
261
+ | 7 | right | 260 |
262
+ | 8 | éve | 259 |
263
+ | 9 | thumb | 226 |
264
+ | 10 | vé | 180 |
265
+
266
+ ### Least Common Words (from vocabulary)
267
+
268
+ | Rank | Word | Frequency |
269
+ |------|------|-----------|
270
+ | 1 | evenóse | 2 |
271
+ | 2 | mountain | 2 |
272
+ | 3 | cal | 2 |
273
+ | 4 | poly | 2 |
274
+ | 5 | mustangs | 2 |
275
+ | 6 | sevonévo | 2 |
276
+ | 7 | ėstovátamevéotse | 2 |
277
+ | 8 | ėstova | 2 |
278
+ | 9 | nėstse | 2 |
279
+ | 10 | 2025 | 2 |
280
+
281
+ ### Zipf's Law Analysis
282
+
283
+ | Metric | Value |
284
+ |--------|-------|
285
+ | Zipf Coefficient | 0.8829 |
286
+ | R² (Goodness of Fit) | 0.980523 |
287
+ | Adherence Quality | **excellent** |
288
+
289
+ ### Coverage Analysis
290
+
291
+ | Top N Words | Coverage |
292
+ |-------------|----------|
293
+ | Top 100 | 57.7% |
294
+ | Top 1,000 | 90.8% |
295
+ | Top 5,000 | 0.0% |
296
+ | Top 10,000 | 0.0% |
297
+
298
+ ### Key Findings
299
+
300
+ - **Zipf Compliance:** R²=0.9805 indicates excellent adherence to Zipf's law
301
+ - **High Frequency Dominance:** Top 100 words cover 57.7% of corpus
302
+ - **Long Tail:** -8,341 words needed for remaining 100.0% coverage
303
+
304
+ ---
305
+ ## 5. Word Embeddings Evaluation
306
+
307
+ ![Embedding Isotropy](visualizations/embedding_isotropy.png)
308
+
309
+ ![Similarity Matrix](visualizations/embedding_similarity.png)
310
+
311
+ ![t-SNE Words](visualizations/tsne_words.png)
312
+
313
+ ![t-SNE Sentences](visualizations/tsne_sentences.png)
314
+
315
+ ### Model Comparison
316
+
317
+ | Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
318
+ |-------|------------|-----------|----------|----------|----------|
319
+ | **mono_32d** | 223 | 32 | 1.577 | 0.877 | 0.0028 🏆 |
320
+ | **mono_64d** | 223 | 64 | 1.556 | 0.897 | 0.0009 |
321
+ | **mono_128d** | 223 | 128 | 1.593 | 0.888 | 0.0002 |
322
+ | **embeddings_enhanced** | 0 | 0 | 0.000 | 0.000 | 0.0000 |
323
+
324
+ ### Key Findings
325
+
326
+ - **Best Isotropy:** mono_32d with 0.0028 (more uniform distribution)
327
+ - **Dimension Trade-off:** Higher dimensions capture more semantics but reduce isotropy
328
+ - **Vocabulary Coverage:** All models cover 223 words
329
+ - **Recommendation:** 100d for balanced semantic capture and efficiency
330
+
331
+ ---
332
+ ## 6. Summary & Recommendations
333
+
334
+ ![Performance Dashboard](visualizations/performance_dashboard.png)
335
+
336
+ ### Production Recommendations
337
+
338
+ | Component | Recommended | Rationale |
339
+ |-----------|-------------|-----------|
340
+ | Tokenizer | **32k BPE** | Best compression (3.46x) with low UNK rate |
341
+ | N-gram | **5-gram** | Lowest perplexity (237) |
342
+ | Markov | **Context-4** | Highest predictability (94.5%) |
343
+ | Embeddings | **100d** | Balanced semantic capture and isotropy |
344
+
345
+ ---
346
+ ## Appendix: Metrics Glossary & Interpretation Guide
347
+
348
+ This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
349
+
350
+ ### Tokenizer Metrics
351
+
352
+ **Compression Ratio**
353
+ > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
354
+ >
355
+ > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
356
+ >
357
+ > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
358
+
359
+ **Average Token Length (Fertility)**
360
+ > *Definition:* Mean number of characters per token produced by the tokenizer.
361
+ >
362
+ > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
363
+ >
364
+ > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
365
+
366
+ **Unknown Token Rate (OOV Rate)**
367
+ > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
368
+ >
369
+ > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
370
+ >
371
+ > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
372
+
373
+ ### N-gram Model Metrics
374
+
375
+ **Perplexity**
376
+ > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
377
+ >
378
+ > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
379
+ >
380
+ > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
381
+
382
+ **Entropy**
383
+ > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
384
+ >
385
+ > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
386
+ >
387
+ > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
388
+
389
+ **Coverage (Top-K)**
390
+ > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
391
+ >
392
+ > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
393
+ >
394
+ > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
395
+
396
+ ### Markov Chain Metrics
397
+
398
+ **Average Entropy**
399
+ > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
400
+ >
401
+ > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
402
+ >
403
+ > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
404
+
405
+ **Branching Factor**
406
+ > *Definition:* Average number of unique next tokens observed for each context.
407
+ >
408
+ > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
409
+ >
410
+ > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
411
+
412
+ **Predictability**
413
+ > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
414
+ >
415
+ > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
416
+ >
417
+ > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
418
+
419
+ ### Vocabulary & Zipf's Law Metrics
420
+
421
+ **Zipf's Coefficient**
422
+ > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
423
+ >
424
+ > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
425
+ >
426
+ > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
427
+
428
+ **R² (Coefficient of Determination)**
429
+ > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
430
+ >
431
+ > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
432
+ >
433
+ > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
434
+
435
+ **Vocabulary Coverage**
436
+ > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
437
+ >
438
+ > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
439
+ >
440
+ > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
441
+
442
+ ### Word Embedding Metrics
443
+
444
+ **Isotropy**
445
+ > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
446
+ >
447
+ > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
448
+ >
449
+ > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
450
+
451
+ **Average Norm**
452
+ > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
453
+ >
454
+ > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
455
+ >
456
+ > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
457
+
458
+ **Cosine Similarity**
459
+ > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
460
+ >
461
+ > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
462
+ >
463
+ > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
464
+
465
+ **t-SNE Visualization**
466
+ > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
467
+ >
468
+ > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
469
+ >
470
+ > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
471
+
472
+ ### General Interpretation Guidelines
473
+
474
+ 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
475
+ 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
476
+ 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
477
+ 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
478
+ 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
479
+
480
+
481
+ ### Visualizations Index
482
+
483
+ | Visualization | Description |
484
+ |---------------|-------------|
485
+ | Tokenizer Compression | Compression ratios by vocabulary size |
486
+ | Tokenizer Fertility | Average token length by vocabulary |
487
+ | Tokenizer OOV | Unknown token rates |
488
+ | Tokenizer Total Tokens | Total tokens by vocabulary |
489
+ | N-gram Perplexity | Perplexity by n-gram size |
490
+ | N-gram Entropy | Entropy by n-gram size |
491
+ | N-gram Coverage | Top pattern coverage |
492
+ | N-gram Unique | Unique n-gram counts |
493
+ | Markov Entropy | Entropy by context size |
494
+ | Markov Branching | Branching factor by context |
495
+ | Markov Contexts | Unique context counts |
496
+ | Zipf's Law | Frequency-rank distribution with fit |
497
+ | Vocab Frequency | Word frequency distribution |
498
+ | Top 20 Words | Most frequent words |
499
+ | Vocab Coverage | Cumulative coverage curve |
500
+ | Embedding Isotropy | Vector space uniformity |
501
+ | Embedding Norms | Vector magnitude distribution |
502
+ | Embedding Similarity | Word similarity heatmap |
503
+ | Nearest Neighbors | Similar words for key terms |
504
+ | t-SNE Words | 2D word embedding visualization |
505
+ | t-SNE Sentences | 2D sentence embedding visualization |
506
+ | Position Encoding | Encoding method comparison |
507
+ | Model Sizes | Storage requirements |
508
+ | Performance Dashboard | Comprehensive performance overview |
509
+
510
+ ---
511
+ ## About This Project
512
+
513
+ ### Data Source
514
+
515
+ Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
516
+
517
+ ### Project
518
+
519
+ A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
520
+
521
+ ### Maintainer
522
+
523
+ [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
524
+
525
+ ### Citation
526
+
527
+ If you use these models in your research, please cite:
528
+
529
+ ```bibtex
530
+ @misc{wikilangs2025,
531
+ author = {Kamali, Omar},
532
+ title = {Wikilangs: Open NLP Models for Wikipedia Languages},
533
+ year = {2025},
534
+ publisher = {HuggingFace},
535
+ url = {https://huggingface.co/wikilangs}
536
+ institution = {Omneity Labs}
537
+ }
538
+ ```
539
+
540
+ ### License
541
+
542
+ MIT License - Free for academic and commercial use.
543
+
544
+ ### Links
545
+
546
+ - 🌐 Website: [wikilangs.org](https://wikilangs.org)
547
+ - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
548
+ - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
549
+ - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
550
+ ---
551
+ *Generated by Wikilangs Models Pipeline*
552
+
553
+ *Report Date: 2025-12-28 22:42:59*
models/embeddings/monolingual/chy_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9abb00efdaee95eb235694ba4738708972eef813303beafecc2c4852c0a11360
3
+ size 1024233321
models/embeddings/monolingual/chy_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "chy", "dim": 128, "max_seq_len": 512, "is_aligned": false}
models/embeddings/monolingual/chy_128d_metadata.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "chy",
3
+ "dimension": 128,
4
+ "version": "monolingual",
5
+ "training_params": {
6
+ "dim": 128,
7
+ "min_count": 5,
8
+ "window": 5,
9
+ "negative": 5,
10
+ "epochs": 5
11
+ },
12
+ "vocab_size": 223
13
+ }
models/embeddings/monolingual/chy_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c8e4f25fd101e1917ce06bf1768de9245362d868e23a5ebbbc943b0e4650a60
3
+ size 256062057
models/embeddings/monolingual/chy_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "chy", "dim": 32, "max_seq_len": 512, "is_aligned": false}
models/embeddings/monolingual/chy_32d_metadata.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "chy",
3
+ "dimension": 32,
4
+ "version": "monolingual",
5
+ "training_params": {
6
+ "dim": 32,
7
+ "min_count": 5,
8
+ "window": 5,
9
+ "negative": 5,
10
+ "epochs": 5
11
+ },
12
+ "vocab_size": 223
13
+ }
models/embeddings/monolingual/chy_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c920935ac87a1441f862361919b9313ce17a00634fb4b6dc1a1bb483d79a2f5
3
+ size 512119145
models/embeddings/monolingual/chy_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "chy", "dim": 64, "max_seq_len": 512, "is_aligned": false}
models/embeddings/monolingual/chy_64d_metadata.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "chy",
3
+ "dimension": 64,
4
+ "version": "monolingual",
5
+ "training_params": {
6
+ "dim": 64,
7
+ "min_count": 5,
8
+ "window": 5,
9
+ "negative": 5,
10
+ "epochs": 5
11
+ },
12
+ "vocab_size": 223
13
+ }
models/subword_markov/chy_markov_ctx1_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ea83b117f3a486981315ed6c06f66c8b179b52afa64753b10adcb037d01a299
3
+ size 19111
models/subword_markov/chy_markov_ctx1_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 1,
3
+ "variant": "subword",
4
+ "language": "chy",
5
+ "unique_contexts": 189,
6
+ "total_transitions": 113177
7
+ }
models/subword_markov/chy_markov_ctx2_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc4389e4a77f6c71ab2c352c280e4fc1281ab64c25a40abbcf7af73411115bda
3
+ size 71565
models/subword_markov/chy_markov_ctx2_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 2,
3
+ "variant": "subword",
4
+ "language": "chy",
5
+ "unique_contexts": 2073,
6
+ "total_transitions": 112352
7
+ }
models/subword_markov/chy_markov_ctx3_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7f1d3cabcf310e4f6579f8d79db5b6ca9e6cb8c218d840ca5d728e17f8a9d72
3
+ size 189294
models/subword_markov/chy_markov_ctx3_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 3,
3
+ "variant": "subword",
4
+ "language": "chy",
5
+ "unique_contexts": 10919,
6
+ "total_transitions": 111527
7
+ }
models/subword_markov/chy_markov_ctx4_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f537764e3ba64873ce0be3e727efce7efa3b3ee9a512520fdff8fe7b9f23660
3
+ size 357786
models/subword_markov/chy_markov_ctx4_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 4,
3
+ "variant": "subword",
4
+ "language": "chy",
5
+ "unique_contexts": 25260,
6
+ "total_transitions": 110702
7
+ }
models/subword_ngram/chy_2gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ed544f13314cfc2324a3b1462dfcc47e71f1236aeb6319b89b7d6e18ac3920a
3
+ size 14546
models/subword_ngram/chy_2gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 2,
3
+ "variant": "subword",
4
+ "language": "chy",
5
+ "unique_ngrams": 1127,
6
+ "total_ngrams": 113177
7
+ }
models/subword_ngram/chy_3gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b077e5de241ab6ccaa7e1f45221e1202536459be7a01c5b4b63e9fd20ba730d
3
+ size 54182
models/subword_ngram/chy_3gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 3,
3
+ "variant": "subword",
4
+ "language": "chy",
5
+ "unique_ngrams": 4876,
6
+ "total_ngrams": 112352
7
+ }
models/subword_ngram/chy_4gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b1c577153cd04ac40d0b50f9a07ec2270c218aff4d156a1ece01fd0edfec031
3
+ size 130151
models/subword_ngram/chy_4gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 4,
3
+ "variant": "subword",
4
+ "language": "chy",
5
+ "unique_ngrams": 11151,
6
+ "total_ngrams": 111527
7
+ }
models/tokenizer/chy_tokenizer_16k.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c71f72411f24cc631cd9f61bb3360c8a91877e246b11a2af3c2ce3fe5aafda3c
3
+ size 494718
models/tokenizer/chy_tokenizer_16k.vocab ADDED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/chy_tokenizer_8k.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17ad6a6d3558277d6925eb68f3855cb005e2fe3557d8485bf68a6f7274296dab
3
+ size 375317
models/tokenizer/chy_tokenizer_8k.vocab ADDED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/chy_vocabulary.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:470592a0b112b9a3a65f69af1557219cccb407f27f3a4236e60e71c7c2f40313
3
+ size 29068
models/vocabulary/chy_vocabulary_metadata.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "chy",
3
+ "vocabulary_size": 1659,
4
+ "statistics": {
5
+ "type_token_ratio": 0.24974895150333748,
6
+ "coverage": {
7
+ "top_100": 0.4891015417331207,
8
+ "top_1000": 0.7703939984641739
9
+ },
10
+ "hapax_count": 2569,
11
+ "hapax_ratio": 0.6076158940397351,
12
+ "total_documents": 825
13
+ }
14
+ }
models/word_markov/chy_markov_ctx1_word.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fb77d185c917a1f8ece3debd54279262bbc2e1a01799fcb691731a7561bee31
3
+ size 113562
models/word_markov/chy_markov_ctx1_word_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 1,
3
+ "variant": "word",
4
+ "language": "chy",
5
+ "unique_contexts": 4255,
6
+ "total_transitions": 27559
7
+ }
models/word_markov/chy_markov_ctx2_word.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1602a760151707012bb6aef66d181795727fa9d8cb5780233a0b6c1c90a2312
3
+ size 189750
models/word_markov/chy_markov_ctx2_word_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 2,
3
+ "variant": "word",
4
+ "language": "chy",
5
+ "unique_contexts": 10197,
6
+ "total_transitions": 26734
7
+ }
models/word_markov/chy_markov_ctx3_word.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a91e6dbb80dac8f5da14abcdfc3ba5c7122ed0a171bc88e3d506ea5a62e4790
3
+ size 251639
models/word_markov/chy_markov_ctx3_word_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 3,
3
+ "variant": "word",
4
+ "language": "chy",
5
+ "unique_contexts": 13745,
6
+ "total_transitions": 25909
7
+ }
models/word_markov/chy_markov_ctx4_word.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b827d8d8deb6ee8ee5a1c2f7e9164c6009220d08c889406bed208c143c67ef6f
3
+ size 299200
models/word_markov/chy_markov_ctx4_word_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "context_size": 4,
3
+ "variant": "word",
4
+ "language": "chy",
5
+ "unique_contexts": 16004,
6
+ "total_transitions": 25085
7
+ }
models/word_ngram/chy_2gram_word.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dc44fada7846034391ea2690c56b864a908054940a91ca581f91cf63ba43b79
3
+ size 11396
models/word_ngram/chy_2gram_word_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 2,
3
+ "variant": "word",
4
+ "language": "chy",
5
+ "unique_ngrams": 654,
6
+ "total_ngrams": 27559
7
+ }
models/word_ngram/chy_3gram_word.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac58b70ff5ea478cd859a06e2722ba50d36f1d0a7d83c8e35282a144a67b1369
3
+ size 20739
models/word_ngram/chy_3gram_word_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 3,
3
+ "variant": "word",
4
+ "language": "chy",
5
+ "unique_ngrams": 1211,
6
+ "total_ngrams": 26734
7
+ }
models/word_ngram/chy_4gram_word.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fb9ac65e984d6fb53483e3e4ddaf089e90baeef0b877dc6f9e5067d9f4d0a9d
3
+ size 39062
models/word_ngram/chy_4gram_word_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 4,
3
+ "variant": "word",
4
+ "language": "chy",
5
+ "unique_ngrams": 2302,
6
+ "total_ngrams": 25909
7
+ }
visualizations/embedding_isotropy.png ADDED
visualizations/embedding_norms.png ADDED
visualizations/embedding_similarity.png ADDED

Git LFS Details

  • SHA256: 125496fee51a0eff7033a820a5c76329e49094e721ffbc2269e6e45e220f6eb8
  • Pointer size: 131 Bytes
  • Size of remote file: 174 kB
visualizations/markov_branching.png ADDED
visualizations/markov_contexts.png ADDED