592ef1b503c686d1eccd1b3154967e2e

This model is a fine-tuned version of distilbert/distilbert-base-german-cased on the dim/tldr_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9531
  • Data Size: 1.0
  • Epoch Runtime: 5.7829
  • Accuracy: 0.7479
  • F1 Macro: 0.7743
  • Rouge1: 0.7486
  • Rouge2: 0.0
  • Rougel: 0.7482
  • Rougelsum: 0.7479

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 1.6487 0 0.9596 0.0185 0.0073 0.0185 0.0 0.0185 0.0185
No log 1 178 1.5231 0.0078 2.2349 0.3196 0.1680 0.3203 0.0 0.3200 0.3196
No log 2 356 1.4243 0.0156 1.1919 0.4545 0.2462 0.4553 0.0 0.4545 0.4538
No log 3 534 1.2987 0.0312 1.3966 0.3913 0.2289 0.3913 0.0 0.3913 0.3906
No log 4 712 1.1949 0.0625 1.5513 0.5135 0.3922 0.5142 0.0 0.5135 0.5135
No log 5 890 0.8761 0.125 1.8274 0.6719 0.4983 0.6733 0.0 0.6726 0.6719
0.0679 6 1068 0.7637 0.25 2.3717 0.6982 0.5558 0.6989 0.0 0.6996 0.6982
0.677 7 1246 0.7559 0.5 3.5464 0.7116 0.7000 0.7124 0.0 0.7124 0.7109
0.5869 8.0 1424 0.6202 1.0 5.9121 0.7550 0.7665 0.7557 0.0 0.7557 0.7550
0.4503 9.0 1602 0.7160 1.0 5.7949 0.7315 0.7220 0.7322 0.0 0.7322 0.7308
0.3411 10.0 1780 0.7409 1.0 5.8967 0.7521 0.7834 0.7536 0.0 0.7528 0.7521
0.2633 11.0 1958 0.8448 1.0 5.8588 0.7443 0.7886 0.7450 0.0 0.7450 0.7443
0.1718 12.0 2136 0.9531 1.0 5.7829 0.7479 0.7743 0.7486 0.0 0.7482 0.7479

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
3
Safetensors
Model size
67.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for contemmcm/592ef1b503c686d1eccd1b3154967e2e

Finetuned
(36)
this model

Evaluation results