AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use
Paper
•
2505.12650
•
Published
•
8
image
imagewidth (px) 344
2.15k
| label
class label 2
classes |
|---|---|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
0img
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
|
1label
|
The AutoMat Benchmark is a multimodal dataset designed to evaluate deep‑learning systems for iDPC-STEM‑based crystal‑structure reconstruction and property prediction.
Code: https://github.com/yyt-2378/AutoMat
The dataset is organized into three tiers of increasing difficulty:
benchmark/
├── tier1/
│ ├── img/ # STEM images (e.g., PNG, TIFF)
│ ├── label/ # Atomic position labels (e.g., TXT, JSON)
│ └── cif_file/ # Reconstructed or ground‑truth CIF files
├── tier2/
│ └── ... # Same sub‑folders as tier1
├── tier3/
│ └── ...
└── property.csv # Material properties for all samples
| Tier | Characteristics |
|---|---|
| Tier 1 | Simulated low-noise STEM images, light elements, low complexity |
| Tier 2 | Moderate noise or multiple elements, more realistic patterns |
| Tier 3 | Low dose, multi-elements, complex symmetry |
Each sample in the dataset includes:
img/)label/)cif_file/)property.csv| File / Folder | Description |
|---|---|
img/ |
STEM input images (grayscale microscopy) |
label/ |
Atomic position data (format: .png per sample) |
cif_file/ |
.cif crystal structure files for each sample |
property.csv |
Global material properties table with material_id match |
This dataset is released under the MIT License. You are free to use, modify, and distribute with attribution.
If you use this benchmark, please cite:
@misc{yang2025automatenablingautomatedcrystal,
title={AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use},
author={Yaotian Yang and Yiwen Tang and Yizhe Chen and Xiao Chen and Jiangjie Qiu and Hao Xiong and Haoyu Yin and Zhiyao Luo and Yifei Zhang and Sijia Tao and Wentao Li and Qinghua Zhang and Yuqiang Li and Wanli Ouyang and Bin Zhao and Xiaonan Wang and Fei Wei},
year={2025},
eprint={2505.12650},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.12650},
}
For questions or collaborations, please contact: [email protected]