ResNet-2Plus1D: Optimized for Mobile Deployment
Sports and human action recognition in videos
ResNet (2+1)D Convolutions is a network which explicitly factorizes 3D convolution into two separate and successive operations, a 2D spatial convolution and a 1D temporal convolution. It used for video understanding applications.
This model is an implementation of ResNet-2Plus1D found here.
This repository provides scripts to run ResNet-2Plus1D on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.video_classification
- Model Stats:
- Model checkpoint: Kinetics-400
- Input resolution: 112x112
- Number of parameters: 31.5M
- Model size (float): 120 MB
- Model size (w8a8): 30.8 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| ResNet-2Plus1D | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 736.652 ms | 0 - 195 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 81.891 ms | 0 - 181 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 459.478 ms | 0 - 272 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 26.954 ms | 2 - 247 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 398.418 ms | 0 - 3 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 12.863 ms | 2 - 4 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 11.931 ms | 0 - 64 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 392.239 ms | 0 - 195 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 21.602 ms | 0 - 192 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 736.652 ms | 0 - 195 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 81.891 ms | 0 - 181 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 409.844 ms | 0 - 4 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 12.839 ms | 2 - 5 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 475.165 ms | 0 - 188 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 22.955 ms | 0 - 168 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 396.099 ms | 0 - 3 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 12.838 ms | 2 - 4 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 392.239 ms | 0 - 195 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 21.602 ms | 0 - 192 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 292.093 ms | 0 - 281 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 9.306 ms | 2 - 269 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 8.731 ms | 2 - 233 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 266.815 ms | 0 - 193 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 7.356 ms | 2 - 184 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 7.199 ms | 1 - 144 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 259.756 ms | 0 - 203 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 5.418 ms | 2 - 191 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 5.51 ms | 2 - 147 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 13.285 ms | 2 - 2 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 12.322 ms | 60 - 60 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | TFLITE | 1621.204 ms | 321 - 478 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | QNN_DLC | 68.331 ms | 1 - 167 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | ONNX | 299.164 ms | 99 - 112 MB | CPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 1797.052 ms | 267 - 428 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 17.317 ms | 1 - 3 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 317.409 ms | 98 - 129 MB | CPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1292.279 ms | 0 - 394 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 13.087 ms | 1 - 164 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 919.714 ms | 0 - 371 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.175 ms | 1 - 202 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 699.325 ms | 0 - 3 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.426 ms | 1 - 3 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 4.359 ms | 0 - 35 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 672.511 ms | 0 - 339 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.653 ms | 1 - 163 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 1302.786 ms | 407 - 439 MB | CPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 281.369 ms | 71 - 124 MB | CPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1292.279 ms | 0 - 394 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 13.087 ms | 1 - 164 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 700.376 ms | 0 - 3 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.435 ms | 1 - 2 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 763.639 ms | 0 - 340 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.567 ms | 1 - 166 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 700.45 ms | 0 - 3 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.433 ms | 1 - 3 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 672.511 ms | 0 - 339 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.653 ms | 1 - 163 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 512.136 ms | 0 - 438 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.222 ms | 1 - 204 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.205 ms | 0 - 184 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 396.944 ms | 0 - 419 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.411 ms | 1 - 161 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 2.615 ms | 0 - 130 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 1244.845 ms | 334 - 510 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 7.607 ms | 1 - 158 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 286.964 ms | 95 - 110 MB | CPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 582.234 ms | 0 - 372 MB | NPU | ResNet-2Plus1D.tflite |
| ResNet-2Plus1D | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.782 ms | 1 - 165 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.906 ms | 0 - 131 MB | NPU | ResNet-2Plus1D.onnx.zip |
| ResNet-2Plus1D | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.749 ms | 1 - 1 MB | NPU | ResNet-2Plus1D.dlc |
| ResNet-2Plus1D | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 4.487 ms | 31 - 31 MB | NPU | ResNet-2Plus1D.onnx.zip |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[resnet-2plus1d]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.resnet_2plus1d.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.resnet_2plus1d.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.resnet_2plus1d.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.resnet_2plus1d import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on ResNet-2Plus1D's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of ResNet-2Plus1D can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 48
