SAM-Audio-Demo / app.py
prithivMLmods's picture
update app
1fdedf4 verified
import gradio as gr
import torch
import torchaudio
import numpy as np
import os
import tempfile
import spaces
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.orange_red = colors.Color(
name="orange_red",
c50="#FFF0E5",
c100="#FFE0CC",
c200="#FFC299",
c300="#FFA366",
c400="#FF8533",
c500="#FF4500",
c600="#E63E00",
c700="#CC3700",
c800="#B33000",
c900="#992900",
c950="#802200",
)
class OrangeRedTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.orange_red, # Use the new color
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
orange_red_theme = OrangeRedTheme()
try:
from sam_audio import SAMAudio, SAMAudioProcessor
except ImportError as e:
print(f"Warning: 'sam_audio' library not found. Please install it to use this app. Error: {e}")
MODEL_ID = "facebook/sam-audio-large"
DEFAULT_CHUNK_DURATION = 30.0
OVERLAP_DURATION = 2.0
MAX_DURATION_WITHOUT_CHUNKING = 30.0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Loading {MODEL_ID} on {device}...")
model = None
processor = None
try:
model = SAMAudio.from_pretrained(MODEL_ID).to(device).eval()
processor = SAMAudioProcessor.from_pretrained(MODEL_ID)
print("βœ… SAM-Audio loaded successfully.")
except Exception as e:
print(f"❌ Error loading SAM-Audio: {e}")
def load_audio(file_path):
"""Load audio from file (supports both audio and video files)."""
waveform, sample_rate = torchaudio.load(file_path)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
return waveform, sample_rate
def split_audio_into_chunks(waveform, sample_rate, chunk_duration, overlap_duration):
"""Split audio waveform into overlapping chunks."""
chunk_samples = int(chunk_duration * sample_rate)
overlap_samples = int(overlap_duration * sample_rate)
stride = chunk_samples - overlap_samples
chunks = []
total_samples = waveform.shape[1]
if total_samples <= chunk_samples:
return [waveform]
start = 0
while start < total_samples:
end = min(start + chunk_samples, total_samples)
chunk = waveform[:, start:end]
chunks.append(chunk)
if end >= total_samples:
break
start += stride
return chunks
def merge_chunks_with_crossfade(chunks, sample_rate, overlap_duration):
"""Merge audio chunks with crossfade on overlapping regions."""
if len(chunks) == 1:
chunk = chunks[0]
if chunk.dim() == 1:
chunk = chunk.unsqueeze(0)
return chunk
overlap_samples = int(overlap_duration * sample_rate)
processed_chunks = []
for chunk in chunks:
if chunk.dim() == 1:
chunk = chunk.unsqueeze(0)
processed_chunks.append(chunk)
result = processed_chunks[0]
for i in range(1, len(processed_chunks)):
prev_chunk = result
next_chunk = processed_chunks[i]
actual_overlap = min(overlap_samples, prev_chunk.shape[1], next_chunk.shape[1])
if actual_overlap <= 0:
result = torch.cat([prev_chunk, next_chunk], dim=1)
continue
fade_out = torch.linspace(1.0, 0.0, actual_overlap).to(prev_chunk.device)
fade_in = torch.linspace(0.0, 1.0, actual_overlap).to(next_chunk.device)
prev_overlap = prev_chunk[:, -actual_overlap:]
next_overlap = next_chunk[:, :actual_overlap]
crossfaded = prev_overlap * fade_out + next_overlap * fade_in
result = torch.cat([
prev_chunk[:, :-actual_overlap],
crossfaded,
next_chunk[:, actual_overlap:]
], dim=1)
return result
def save_audio(tensor, sample_rate):
"""Saves a tensor to a temporary WAV file and returns path."""
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
tensor = tensor.cpu()
if tensor.dim() == 1:
tensor = tensor.unsqueeze(0)
torchaudio.save(tmp.name, tensor, sample_rate)
return tmp.name
@spaces.GPU(duration=120)
def process_audio(file_path, text_prompt, chunk_duration_val, progress=gr.Progress()):
global model, processor
if model is None or processor is None:
return None, None, "❌ Model not loaded correctly. Check logs."
progress(0.05, desc="Checking inputs...")
if not file_path:
return None, None, "❌ Please upload an audio or video file."
if not text_prompt or not text_prompt.strip():
return None, None, "❌ Please enter a text prompt."
try:
progress(0.15, desc="Loading audio...")
waveform, sample_rate = load_audio(file_path)
duration = waveform.shape[1] / sample_rate
c_dur = chunk_duration_val if chunk_duration_val else DEFAULT_CHUNK_DURATION
use_chunking = duration > MAX_DURATION_WITHOUT_CHUNKING
if use_chunking:
progress(0.2, desc=f"Audio is {duration:.1f}s, splitting into chunks...")
chunks = split_audio_into_chunks(waveform, sample_rate, c_dur, OVERLAP_DURATION)
num_chunks = len(chunks)
target_chunks = []
residual_chunks = []
for i, chunk in enumerate(chunks):
chunk_progress = 0.2 + (i / num_chunks) * 0.6
progress(chunk_progress, desc=f"Processing chunk {i+1}/{num_chunks}...")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
torchaudio.save(tmp.name, chunk, sample_rate)
chunk_path = tmp.name
try:
inputs = processor(audios=[chunk_path], descriptions=[text_prompt.strip()]).to(device)
with torch.inference_mode():
result = model.separate(inputs, predict_spans=False, reranking_candidates=1)
target_chunks.append(result.target[0].detach().cpu())
residual_chunks.append(result.residual[0].detach().cpu())
finally:
if os.path.exists(chunk_path):
os.unlink(chunk_path)
progress(0.85, desc="Merging chunks...")
target_merged = merge_chunks_with_crossfade(target_chunks, sample_rate, OVERLAP_DURATION)
residual_merged = merge_chunks_with_crossfade(residual_chunks, sample_rate, OVERLAP_DURATION)
progress(0.95, desc="Saving results...")
target_path = save_audio(target_merged, sample_rate)
residual_path = save_audio(residual_merged, sample_rate)
progress(1.0, desc="Done!")
return target_path, residual_path, f"βœ… Isolated '{text_prompt}' ({num_chunks} chunks)"
else:
progress(0.3, desc="Processing audio...")
inputs = processor(audios=[file_path], descriptions=[text_prompt.strip()]).to(device)
progress(0.6, desc="Separating sounds...")
with torch.inference_mode():
result = model.separate(inputs, predict_spans=False, reranking_candidates=1)
progress(0.9, desc="Saving results...")
sr = processor.audio_sampling_rate
target_path = save_audio(result.target[0].unsqueeze(0).cpu(), sr)
residual_path = save_audio(result.residual[0].unsqueeze(0).cpu(), sr)
progress(1.0, desc="Done!")
return target_path, residual_path, f"βœ… Isolated '{text_prompt}'"
except Exception as e:
import traceback
traceback.print_exc()
return None, None, f"❌ Error: {str(e)}"
css = """
#main-title h1 {font-size: 2.4em}
"""
with gr.Blocks() as demo:
gr.Markdown("# **SAM-Audio-Demo**", elem_id="main-title")
gr.Markdown("Segment and isolate specific music/sounds from audio files using natural language descriptions, powered by [SAM-Audio-Large](https://huggingface.co/facebook/sam-audio-large).")
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column(scale=1):
input_file = gr.Audio(label="Input Audio", type="filepath")
text_prompt = gr.Textbox(label="Sound to Isolate", placeholder="e.g., 'A man speaking', 'Bird chirping'")
with gr.Accordion("Advanced Settings", open=False):
chunk_duration_slider = gr.Slider(
minimum=10, maximum=60, value=30, step=5,
label="Chunk Duration (seconds)",
info="Processing long audio in chunks prevents out-of-memory errors."
)
run_btn = gr.Button("Segment Audio", variant="primary")
with gr.Column(scale=1):
output_target = gr.Audio(label="Isolated Sound (Target)", type="filepath")
output_residual = gr.Audio(label="Background (Residual)", type="filepath")
status_out = gr.Textbox(label="Status", interactive=False, show_label=True, lines=6)
gr.Examples(
examples=[
["example_audio/speech.mp3", "Music", 30],
["example_audio/song.mp3", "Drum", 30],
["example_audio/song2.mp3", "Music", 30],
],
inputs=[input_file, text_prompt, chunk_duration_slider],
label="Audio Examples"
)
run_btn.click(
fn=process_audio,
inputs=[input_file, text_prompt, chunk_duration_slider],
outputs=[output_target, output_residual, status_out]
)
if __name__ == "__main__":
demo.launch(theme=orange_red_theme, css=css, mcp_server=True, ssr_mode=False)