Overview of Step-Audio-R1.1

Introduction

Step-Audio R1.1 (Realtime) is a major upgrade to Step-Audio-R1, designed for interactive spoken dialogue with both real-time responsiveness and strong reasoning capability.

Unlike conventional streaming speech models that trade intelligence for latency, R1.1 enables thinking while speaking, achieving high intelligence without sacrificing speed.

Mind-Paced Speaking (Low Latency)

Based on the research Mind-Paced Speaking, the Realtime variant adopts a Dual-Brain Architecture:

  • A Formulation Brain responsible for high-level reasoning
  • An Articulation Brain dedicated to speech generation

This decoupling allows the model to perform Chain-of-Thought reasoning during speech output, maintaining ultra-low latency while handling complex tasks in real time.

Acoustic-Grounded Reasoning (High Intelligence)

To address the inverted scaling issue—where reasoning over transcripts can degrade performance—Step-Audio R1.1 grounds its reasoning directly in acoustic representations rather than text alone.

Through iterative self-distillation, extended deliberation becomes a strength instead of a liability. This enables effective test-time compute scaling and leads to state-of-the-art performance, including top-ranking results on the AA benchmark.

image

image

image

Model Usage

📜 Requirements

  • GPU: NVIDIA GPUs with CUDA support (tested on 4×L40S/H100/H800/H20).
  • Operating System: Linux.
  • Python: >= 3.10.0.

⬇️ Download Model

First, you need to download the Step-Audio-R1 model weights.

Method A · Git LFS

git lfs install
git clone https://huggingface.co/stepfun-ai/Step-Audio-R1.1

Method B · Hugging Face CLI

hf download stepfun-ai/Step-Audio-R1.1 --local-dir ./Step-Audio-R1.1

🚀 Deployment and Execution

We provide two ways to serve the model: Docker (recommended) or compiling the customized vLLM backend.

🐳 Method 1 · Run with Docker (Recommended)

A customized vLLM image is required.

  1. Pull the image:
docker pull stepfun2025/vllm:step-audio-2-v20250909
  1. Start the service: Assuming the model is downloaded in the Step-Audio-R1 folder in the current directory.

    docker run --rm -ti --gpus all \
        -v $(pwd)/Step-Audio-R1.1:/Step-Audio-R1.1 \
        -p 9999:9999 \
        stepfun2025/vllm:step-audio-2-v20250909 \
        -- vllm serve /Step-Audio-R1.1 \
        --served-model-name Step-Audio-R1.1 \
        --port 9999 \
        --max-model-len 16384 \
        --max-num-seqs 32 \
        --tensor-parallel-size 4 \
        --chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("<audio_patch>\n", "<audio_patch>") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}<audio_patch>{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n<think>\n'"'"' -}}{%- endif -%}' \
        --enable-log-requests \
        --interleave-mm-strings \
        --trust-remote-code
    

After the service starts, it will listen on localhost:9999.

🐳 Method 2 · Run from Source (Compile vLLM)

Step-Audio-R1 requires a customized vLLM backend.

  1. Download Source Code:

    git clone https://github.com/stepfun-ai/vllm.git
    cd vllm
    
  2. Prepare Environment:

    python3 -m venv .venv
    source .venv/bin/activate
    
  3. Install and Compile: vLLM contains both C++ and Python code. We mainly modified the Python code, so the C++ part can use the pre-compiled version to speed up the process.

    # Use pre-compiled C++ extensions (Recommended)
    VLLM_USE_PRECOMPILED=1 pip install -e .
    
  4. Switch Branch: After compilation, switch to the branch that supports Step-Audio.

    git checkout feat/step-audio-support
    
  5. Start the Service:

    # Ensure you are in the vllm directory and the virtual environment is activated
    source .venv/bin/activate
    
    python3 -m vllm.entrypoints.openai.api_server \
        --model ../Step-Audio-R1.1 \
        --served-model-name Step-Audio-R1.1 \
        --port 9999 \
        --host 0.0.0.0 \
        --max-model-len 65536 \
        --max-num-seqs 128 \
        --tensor-parallel-size 4 \
        --gpu-memory-utilization 0.85 \
        --trust-remote-code \
        --enable-log-requests \
        --interleave-mm-strings \
        --chat-template '{%- macro render_content(content) -%}{%- if content is string -%}{{- content.replace("<audio_patch>\n", "<audio_patch>") -}}{%- elif content is mapping -%}{{- content['"'"'value'"'"'] if '"'"'value'"'"' in content else content['"'"'text'"'"'] -}}{%- elif content is iterable -%}{%- for item in content -%}{%- if item.type == '"'"'text'"'"' -%}{{- item['"'"'value'"'"'] if '"'"'value'"'"' in item else item['"'"'text'"'"'] -}}{%- elif item.type == '"'"'audio'"'"' -%}<audio_patch>{%- endif -%}{%- endfor -%}{%- endif -%}{%- endmacro -%}{%- if tools -%}{{- '"'"'<|BOT|>system\n'"'"' -}}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{{- '"'"'<|BOT|>tool_json_schemas\n'"'"' + tools|tojson + '"'"'<|EOT|>'"'"' -}}{%- else -%}{%- if messages[0]['"'"'role'"'"'] == '"'"'system'"'"' -%}{{- '"'"'<|BOT|>system\n'"'"' + render_content(messages[0]['"'"'content'"'"']) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- for message in messages -%}{%- if message["role"] == "user" -%}{{- '"'"'<|BOT|>human\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- elif message["role"] == "assistant" -%}{{- '"'"'<|BOT|>assistant\n'"'"' + (render_content(message["content"]) if message["content"] else '"'"''"'"') -}}{%- set is_last_assistant = true -%}{%- for m in messages[loop.index:] -%}{%- if m["role"] == "assistant" -%}{%- set is_last_assistant = false -%}{%- endif -%}{%- endfor -%}{%- if not is_last_assistant -%}{{- '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- elif message["role"] == "function_output" -%}{%- else -%}{%- if not (loop.first and message["role"] == "system") -%}{{- '"'"'<|BOT|>'"'"' + message["role"] + '"'"'\n'"'"' + render_content(message["content"]) + '"'"'<|EOT|>'"'"' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{- '"'"'<|BOT|>assistant\n<think>\n'"'"' -}}{%- endif -%}'
    

After the service starts, it will listen on localhost:9999.

Downloads last month
3
Safetensors
Model size
33B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including stepfun-ai/Step-Audio-R1.1