Aragonese - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Aragonese Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.559x | 3.56 | 0.1247% | 1,207,427 |
| 16k | 3.854x | 3.85 | 0.1351% | 1,114,964 |
| 32k | 4.092x | 4.09 | 0.1434% | 1,050,138 |
| 64k | 4.275x π | 4.28 | 0.1498% | 1,005,070 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Bobadilla puet estar: Bobadilla, un municipio de La Rioja. Bobadilla del Campo, ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βbob ad illa βpuet βestar : βbob ad illa , ... (+17 more) |
27 |
| 16k | βbob ad illa βpuet βestar : βbob ad illa , ... (+17 more) |
27 |
| 32k | βbob ad illa βpuet βestar : βbob ad illa , ... (+17 more) |
27 |
| 64k | βbobadilla βpuet βestar : βbobadilla , βun βmunicipio βde βla ... (+11 more) |
21 |
Sample 2: Charleville-Mézières ye una localidat y comuna francesa, capital d'o departament...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βchar le ville - m Γ© zi Γ¨res βye βuna ... (+26 more) |
36 |
| 16k | βchar le ville - mΓ© zi Γ¨res βye βuna βlocalidat ... (+25 more) |
35 |
| 32k | βchar le ville - mΓ© zi Γ¨res βye βuna βlocalidat ... (+23 more) |
33 |
| 64k | βcharleville - mΓ©ziΓ¨res βye βuna βlocalidat βy βcomuna βfrancesa , ... (+19 more) |
29 |
Sample 3: SchΓΆngeising (en bavaro Scheegeising) ye un municipio de Bavera, Alemanya. Se tr...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βsch ΓΆn ge is ing β( en βbavaro βs che ... (+29 more) |
39 |
| 16k | βschΓΆn ge is ing β( en βbavaro βsche e ge ... (+25 more) |
35 |
| 32k | βschΓΆn ge ising β( en βbavaro βsche e ge ising ... (+20 more) |
30 |
| 64k | βschΓΆn ge ising β( en βbavaro βsche e ge ising ... (+20 more) |
30 |
Key Findings
- Best Compression: 64k achieves 4.275x compression
- Lowest UNK Rate: 8k with 0.1247% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 25,712 | 14.65 | 233,669 | 16.7% | 37.4% |
| 2-gram | Subword | 257 π | 8.01 | 7,000 | 68.7% | 99.3% |
| 3-gram | Word | 87,357 | 16.41 | 461,562 | 8.3% | 23.0% |
| 3-gram | Subword | 2,151 | 11.07 | 52,727 | 25.8% | 73.4% |
| 4-gram | Word | 209,676 | 17.68 | 900,576 | 6.8% | 17.2% |
| 4-gram | Subword | 12,170 | 13.57 | 289,768 | 12.6% | 39.7% |
| 5-gram | Word | 208,007 | 17.67 | 773,213 | 6.3% | 16.4% |
| 5-gram | Subword | 46,669 | 15.51 | 901,225 | 7.3% | 25.5% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | d a |
107,208 |
| 2 | d o |
106,261 |
| 3 | en a |
60,798 |
| 4 | en o |
45,519 |
| 5 | de l |
37,458 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a provincia de |
17,480 |
| 2 | d a provincia |
13,447 |
| 3 | una superficie de |
12,736 |
| 4 | suya poblaciΓ³n ye |
12,405 |
| 5 | en una superficie |
12,352 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | suya poblaciΓ³n ye de |
12,284 |
| 2 | en una superficie de |
12,148 |
| 3 | d a provincia de |
12,141 |
| 4 | habitants en una superficie |
11,275 |
| 5 | a suya poblaciΓ³n ye |
11,250 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a suya poblaciΓ³n ye de |
11,136 |
| 2 | habitants en una superficie de |
11,095 |
| 3 | una densidat de poblaciΓ³n de |
10,633 |
| 4 | km con una densidat de |
7,736 |
| 5 | con una densidat de poblaciΓ³n |
7,674 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a _ |
1,873,392 |
| 2 | _ d |
1,605,638 |
| 3 | e _ |
1,544,207 |
| 4 | s _ |
1,309,585 |
| 5 | n _ |
1,215,896 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e |
891,253 |
| 2 | d e _ |
772,067 |
| 3 | _ d ' |
491,537 |
| 4 | e n _ |
478,088 |
| 5 | _ e n |
454,282 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d e _ |
737,370 |
| 2 | _ e n _ |
397,348 |
| 3 | _ d ' a |
234,868 |
| 4 | a _ d e |
184,900 |
| 5 | _ c o n |
179,093 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a _ d e _ |
147,074 |
| 2 | _ q u e _ |
125,472 |
| 3 | c i Γ³ n _ |
124,436 |
| 4 | o _ d e _ |
123,146 |
| 5 | _ d ' a _ |
106,742 |
Key Findings
- Best Perplexity: 2-gram (subword) with 257
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~25% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.9753 | 1.966 | 7.59 | 368,549 | 2.5% |
| 1 | Subword | 0.7834 | 1.721 | 5.75 | 3,672 | 21.7% |
| 2 | Word | 0.3415 | 1.267 | 2.01 | 2,791,626 | 65.9% |
| 2 | Subword | 0.8176 | 1.763 | 5.23 | 21,123 | 18.2% |
| 3 | Word | 0.1548 | 1.113 | 1.33 | 5,610,004 | 84.5% |
| 3 | Subword | 0.7695 | 1.705 | 4.30 | 110,486 | 23.0% |
| 4 | Word | 0.0739 π | 1.053 | 1.14 | 7,469,366 | 92.6% |
| 4 | Subword | 0.7129 | 1.639 | 3.37 | 474,961 | 28.7% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
de las neveras y rfef aprebΓ³ a pachina web oficial d afers son asociadas con osd elba antiparte la provincia d as que se veiga torda collerada rafel vidaller tricas libroa rendiciΓ³n de sattler torna ta partecipar en ifriquiya y cariΓ±o homenage vasallage en aragonΓ©s vinc...
Context Size 2:
d a ciudat de zaragoza tomo i de castiella y leyΓ³n espanya o escritor de lausbubengeschichte yed o reino se consolida la influyencia de l exercito estatounitesne en europa s extiende dende osen a provincia de teruel d o cual en fan parte 4 cantons y 129 comunas lista
Context Size 3:
a provincia de zaragoza en a provincia de concepciΓ³n y d as tres serols estando dimpuΓ©s enamplato ad a provincia de guipuzcua ta atros usos se veiga carlos ix carlos ix 27 de chunio deuna superficie de 158 60 km y una densidat de poblaciΓ³n de 346 35 hab km a suya
Context Size 4:
suya poblaciΓ³n ye de 81 habitants en una superficie de 194 49 km con una densidat de poblaciΓ³n deen una superficie de 64 16 km con una densidat de poblaciΓ³n de 43 44 hab km demografΓa administraciΓ³...d a provincia de burgos ta atros usos se veiga fort yuma desambigaciΓ³n fort yuma tΓtol orichinal en ...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_un_der_dent_ckmas_en_as_2_taclaen_lern_don_vitr
Context Size 2:
a_saus_dabinascer_derfica_sublostie_manaisitau_suyo
Context Size 3:
_dens._val_novant,de_319_de_fuel,_qu_d'o_primetada_cic
Context Size 4:
_de_jean-jose_(naix_en_sido_per_bueno,_d'anglΓ©s_jean_sabi
Key Findings
- Best Predictability: Context-4 (word) with 92.6% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (474,961 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 183,928 |
| Total Tokens | 11,661,736 |
| Mean Frequency | 63.40 |
| Median Frequency | 4 |
| Frequency Std Dev | 2823.00 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | de | 741,521 |
| 2 | d | 497,145 |
| 3 | a | 440,622 |
| 4 | en | 410,893 |
| 5 | o | 301,627 |
| 6 | y | 247,568 |
| 7 | que | 127,976 |
| 8 | l | 109,848 |
| 9 | ye | 109,774 |
| 10 | una | 105,502 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | beljakova | 2 |
| 2 | mΓ©chaly | 2 |
| 3 | wiedemann | 2 |
| 4 | limotte | 2 |
| 5 | wlodkowski | 2 |
| 6 | taos | 2 |
| 7 | slovis | 2 |
| 8 | samaha | 2 |
| 9 | seros | 2 |
| 10 | cookeville | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.0690 |
| RΒ² (Goodness of Fit) | 0.998251 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 44.8% |
| Top 1,000 | 66.8% |
| Top 5,000 | 80.7% |
| Top 10,000 | 85.9% |
Key Findings
- Zipf Compliance: RΒ²=0.9983 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 44.8% of corpus
- Long Tail: 173,928 words needed for remaining 14.1% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.8168 | 0.3517 | N/A | N/A |
| mono_64d | 64 | 0.8232 π | 0.2779 | N/A | N/A |
| mono_128d | 128 | 0.8044 | 0.2016 | N/A | N/A |
| aligned_32d | 32 | 0.8168 | 0.3524 | 0.1520 | 0.4840 |
| aligned_64d | 64 | 0.8232 | 0.2773 | 0.2480 | 0.6340 |
| aligned_128d | 128 | 0.8044 | 0.2034 | 0.3740 | 0.7380 |
Key Findings
- Best Isotropy: mono_64d with 0.8232 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2774. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 37.4% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | -0.358 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-co |
confrontatos, conchecturau, coluche |
-ca |
casartelli, camprodΓ³n, canthus |
-re |
reitzenstein, reformata, reinando |
-de |
destruyir, denasalizadas, debucourt |
-ma |
marktes, matosinhos, marciac |
Productive Suffixes
| Suffix | Examples |
|---|---|
-s |
mourvilles, iliricas, mylonas |
-a |
cingΓΌenda, lecinyena, reformata |
-as |
iliricas, mylonas, aeneas |
-os |
confrontatos, agnatos, estranios |
-es |
mourvilles, marktes, forbes |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
ient |
1.70x | 176 contexts | cient, oient, dient |
ento |
1.74x | 126 contexts | sento, bento, cento |
rago |
2.03x | 58 contexts | arago, trago, ragot |
ranc |
1.64x | 141 contexts | franc, rance, ranca |
aciΓ³ |
2.09x | 47 contexts | naciΓ³, aciΓ³n, faciΓ³ |
enci |
1.53x | 164 contexts | encia, renci, oencia |
obla |
1.90x | 56 contexts | robla, pobla, nobla |
nter |
1.50x | 146 contexts | anter, enter, inter |
ncia |
1.72x | 61 contexts | encia, uncia, oencia |
cion |
1.50x | 110 contexts | scion, nacion, accion |
idat |
2.00x | 28 contexts | unidat, deidat, humidat |
mbre |
1.55x | 75 contexts | ambre, ombre, umbre |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-co |
-s |
71 words | concilios, comenges |
-ca |
-s |
53 words | cabrinos, caracteres |
-ca |
-a |
49 words | cafeΓna, caixera |
-co |
-a |
49 words | cosida, conquiolina |
-ma |
-s |
41 words | mauriscus, mandos |
-ma |
-a |
36 words | mainila, mamma |
-re |
-s |
34 words | reprimius, rechiradors |
-re |
-a |
33 words | relocherΓa, renacentista |
-de |
-a |
30 words | desidia, dentada |
-de |
-s |
30 words | demograficos, deverbativos |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| repoblatos | re-poblat-os |
6.0 | poblat |
| altoaragonesas | altoaragon-es-as |
6.0 | altoaragon |
| recullindo | re-cullindo |
4.5 | cullindo |
| reorganizar | re-organizar |
4.5 | organizar |
| romanticos | romantic-os |
4.5 | romantic |
| casellato | ca-sellato |
4.5 | sellato |
| discapacitatos | discapacitat-os |
4.5 | discapacitat |
| lexicales | lexical-es |
4.5 | lexical |
| monetarias | monetari-as |
4.5 | monetari |
| reproduciΓ³n | re-produciΓ³n |
4.5 | produciΓ³n |
| deportaban | de-portaban |
4.5 | portaban |
| desconoixitas | de-sconoixit-as |
3.0 | sconoixit |
| caspolinas | ca-spolin-as |
3.0 | spolin |
| conservaderas | co-nservader-as |
3.0 | nservader |
| decimetros | de-cimetr-os |
3.0 | cimetr |
6.6 Linguistic Interpretation
Automated Insight: The language Aragonese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.28x) |
| N-gram | 2-gram | Lowest perplexity (257) |
| Markov | Context-4 | Highest predictability (92.6%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-03 17:05:39



















