Aragonese - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Aragonese Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.559x 3.56 0.1247% 1,207,427
16k 3.854x 3.85 0.1351% 1,114,964
32k 4.092x 4.09 0.1434% 1,050,138
64k 4.275x πŸ† 4.28 0.1498% 1,005,070

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Bobadilla puet estar: Bobadilla, un municipio de La Rioja. Bobadilla del Campo, ...

Vocab Tokens Count
8k ▁bob ad illa ▁puet ▁estar : ▁bob ad illa , ... (+17 more) 27
16k ▁bob ad illa ▁puet ▁estar : ▁bob ad illa , ... (+17 more) 27
32k ▁bob ad illa ▁puet ▁estar : ▁bob ad illa , ... (+17 more) 27
64k ▁bobadilla ▁puet ▁estar : ▁bobadilla , ▁un ▁municipio ▁de ▁la ... (+11 more) 21

Sample 2: Charleville-Mézières ye una localidat y comuna francesa, capital d'o departament...

Vocab Tokens Count
8k ▁char le ville - m Γ© zi Γ¨res ▁ye ▁una ... (+26 more) 36
16k ▁char le ville - mΓ© zi Γ¨res ▁ye ▁una ▁localidat ... (+25 more) 35
32k ▁char le ville - mΓ© zi Γ¨res ▁ye ▁una ▁localidat ... (+23 more) 33
64k ▁charleville - mΓ©ziΓ¨res ▁ye ▁una ▁localidat ▁y ▁comuna ▁francesa , ... (+19 more) 29

Sample 3: SchΓΆngeising (en bavaro Scheegeising) ye un municipio de Bavera, Alemanya. Se tr...

Vocab Tokens Count
8k ▁sch ΓΆn ge is ing ▁( en ▁bavaro ▁s che ... (+29 more) 39
16k ▁schΓΆn ge is ing ▁( en ▁bavaro ▁sche e ge ... (+25 more) 35
32k ▁schΓΆn ge ising ▁( en ▁bavaro ▁sche e ge ising ... (+20 more) 30
64k ▁schΓΆn ge ising ▁( en ▁bavaro ▁sche e ge ising ... (+20 more) 30

Key Findings

  • Best Compression: 64k achieves 4.275x compression
  • Lowest UNK Rate: 8k with 0.1247% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 25,712 14.65 233,669 16.7% 37.4%
2-gram Subword 257 πŸ† 8.01 7,000 68.7% 99.3%
3-gram Word 87,357 16.41 461,562 8.3% 23.0%
3-gram Subword 2,151 11.07 52,727 25.8% 73.4%
4-gram Word 209,676 17.68 900,576 6.8% 17.2%
4-gram Subword 12,170 13.57 289,768 12.6% 39.7%
5-gram Word 208,007 17.67 773,213 6.3% 16.4%
5-gram Subword 46,669 15.51 901,225 7.3% 25.5%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 d a 107,208
2 d o 106,261
3 en a 60,798
4 en o 45,519
5 de l 37,458

3-grams (Word):

Rank N-gram Count
1 a provincia de 17,480
2 d a provincia 13,447
3 una superficie de 12,736
4 suya poblaciΓ³n ye 12,405
5 en una superficie 12,352

4-grams (Word):

Rank N-gram Count
1 suya poblaciΓ³n ye de 12,284
2 en una superficie de 12,148
3 d a provincia de 12,141
4 habitants en una superficie 11,275
5 a suya poblaciΓ³n ye 11,250

5-grams (Word):

Rank N-gram Count
1 a suya poblaciΓ³n ye de 11,136
2 habitants en una superficie de 11,095
3 una densidat de poblaciΓ³n de 10,633
4 km con una densidat de 7,736
5 con una densidat de poblaciΓ³n 7,674

2-grams (Subword):

Rank N-gram Count
1 a _ 1,873,392
2 _ d 1,605,638
3 e _ 1,544,207
4 s _ 1,309,585
5 n _ 1,215,896

3-grams (Subword):

Rank N-gram Count
1 _ d e 891,253
2 d e _ 772,067
3 _ d ' 491,537
4 e n _ 478,088
5 _ e n 454,282

4-grams (Subword):

Rank N-gram Count
1 _ d e _ 737,370
2 _ e n _ 397,348
3 _ d ' a 234,868
4 a _ d e 184,900
5 _ c o n 179,093

5-grams (Subword):

Rank N-gram Count
1 a _ d e _ 147,074
2 _ q u e _ 125,472
3 c i Γ³ n _ 124,436
4 o _ d e _ 123,146
5 _ d ' a _ 106,742

Key Findings

  • Best Perplexity: 2-gram (subword) with 257
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~25% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.9753 1.966 7.59 368,549 2.5%
1 Subword 0.7834 1.721 5.75 3,672 21.7%
2 Word 0.3415 1.267 2.01 2,791,626 65.9%
2 Subword 0.8176 1.763 5.23 21,123 18.2%
3 Word 0.1548 1.113 1.33 5,610,004 84.5%
3 Subword 0.7695 1.705 4.30 110,486 23.0%
4 Word 0.0739 πŸ† 1.053 1.14 7,469,366 92.6%
4 Subword 0.7129 1.639 3.37 474,961 28.7%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. de las neveras y rfef aprebΓ³ a pachina web oficial d afers son asociadas con os
  2. d elba antiparte la provincia d as que se veiga torda collerada rafel vidaller tricas libro
  3. a rendiciΓ³n de sattler torna ta partecipar en ifriquiya y cariΓ±o homenage vasallage en aragonΓ©s vinc...

Context Size 2:

  1. d a ciudat de zaragoza tomo i de castiella y leyΓ³n espanya o escritor de lausbubengeschichte ye
  2. d o reino se consolida la influyencia de l exercito estatounitesne en europa s extiende dende os
  3. en a provincia de teruel d o cual en fan parte 4 cantons y 129 comunas lista

Context Size 3:

  1. a provincia de zaragoza en a provincia de concepciΓ³n y d as tres serols estando dimpuΓ©s enamplato a
  2. d a provincia de guipuzcua ta atros usos se veiga carlos ix carlos ix 27 de chunio de
  3. una superficie de 158 60 km y una densidat de poblaciΓ³n de 346 35 hab km a suya

Context Size 4:

  1. suya poblaciΓ³n ye de 81 habitants en una superficie de 194 49 km con una densidat de poblaciΓ³n de
  2. en una superficie de 64 16 km con una densidat de poblaciΓ³n de 43 44 hab km demografΓ­a administraciΓ³...
  3. d a provincia de burgos ta atros usos se veiga fort yuma desambigaciΓ³n fort yuma tΓ­tol orichinal en ...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _un_der_dent_ckm
  2. as_en_as_2_tacla
  3. en_lern_don_vitr

Context Size 2:

  1. a_saus_dabinascer
  2. _derfica_sublosti
  3. e_manaisitau_suyo

Context Size 3:

  1. _dens._val_novant,
  2. de_319_de_fuel,_qu
  3. _d'o_primetada_cic

Context Size 4:

  1. _de_jean-jose_(naix
  2. _en_sido_per_bueno,
  3. _d'anglΓ©s_jean_sabi

Key Findings

  • Best Predictability: Context-4 (word) with 92.6% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (474,961 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 183,928
Total Tokens 11,661,736
Mean Frequency 63.40
Median Frequency 4
Frequency Std Dev 2823.00

Most Common Words

Rank Word Frequency
1 de 741,521
2 d 497,145
3 a 440,622
4 en 410,893
5 o 301,627
6 y 247,568
7 que 127,976
8 l 109,848
9 ye 109,774
10 una 105,502

Least Common Words (from vocabulary)

Rank Word Frequency
1 beljakova 2
2 mΓ©chaly 2
3 wiedemann 2
4 limotte 2
5 wlodkowski 2
6 taos 2
7 slovis 2
8 samaha 2
9 seros 2
10 cookeville 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.0690
RΒ² (Goodness of Fit) 0.998251
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 44.8%
Top 1,000 66.8%
Top 5,000 80.7%
Top 10,000 85.9%

Key Findings

  • Zipf Compliance: RΒ²=0.9983 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 44.8% of corpus
  • Long Tail: 173,928 words needed for remaining 14.1% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8168 0.3517 N/A N/A
mono_64d 64 0.8232 πŸ† 0.2779 N/A N/A
mono_128d 128 0.8044 0.2016 N/A N/A
aligned_32d 32 0.8168 0.3524 0.1520 0.4840
aligned_64d 64 0.8232 0.2773 0.2480 0.6340
aligned_128d 128 0.8044 0.2034 0.3740 0.7380

Key Findings

  • Best Isotropy: mono_64d with 0.8232 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.2774. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 37.4% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap -0.358 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-co confrontatos, conchecturau, coluche
-ca casartelli, camprodΓ³n, canthus
-re reitzenstein, reformata, reinando
-de destruyir, denasalizadas, debucourt
-ma marktes, matosinhos, marciac

Productive Suffixes

Suffix Examples
-s mourvilles, iliricas, mylonas
-a cingΓΌenda, lecinyena, reformata
-as iliricas, mylonas, aeneas
-os confrontatos, agnatos, estranios
-es mourvilles, marktes, forbes

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
ient 1.70x 176 contexts cient, oient, dient
ento 1.74x 126 contexts sento, bento, cento
rago 2.03x 58 contexts arago, trago, ragot
ranc 1.64x 141 contexts franc, rance, ranca
aciΓ³ 2.09x 47 contexts naciΓ³, aciΓ³n, faciΓ³
enci 1.53x 164 contexts encia, renci, oencia
obla 1.90x 56 contexts robla, pobla, nobla
nter 1.50x 146 contexts anter, enter, inter
ncia 1.72x 61 contexts encia, uncia, oencia
cion 1.50x 110 contexts scion, nacion, accion
idat 2.00x 28 contexts unidat, deidat, humidat
mbre 1.55x 75 contexts ambre, ombre, umbre

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-co -s 71 words concilios, comenges
-ca -s 53 words cabrinos, caracteres
-ca -a 49 words cafeΓ­na, caixera
-co -a 49 words cosida, conquiolina
-ma -s 41 words mauriscus, mandos
-ma -a 36 words mainila, mamma
-re -s 34 words reprimius, rechiradors
-re -a 33 words relocherΓ­a, renacentista
-de -a 30 words desidia, dentada
-de -s 30 words demograficos, deverbativos

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
repoblatos re-poblat-os 6.0 poblat
altoaragonesas altoaragon-es-as 6.0 altoaragon
recullindo re-cullindo 4.5 cullindo
reorganizar re-organizar 4.5 organizar
romanticos romantic-os 4.5 romantic
casellato ca-sellato 4.5 sellato
discapacitatos discapacitat-os 4.5 discapacitat
lexicales lexical-es 4.5 lexical
monetarias monetari-as 4.5 monetari
reproduciΓ³n re-produciΓ³n 4.5 produciΓ³n
deportaban de-portaban 4.5 portaban
desconoixitas de-sconoixit-as 3.0 sconoixit
caspolinas ca-spolin-as 3.0 spolin
conservaderas co-nservader-as 3.0 nservader
decimetros de-cimetr-os 3.0 cimetr

6.6 Linguistic Interpretation

Automated Insight: The language Aragonese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.28x)
N-gram 2-gram Lowest perplexity (257)
Markov Context-4 Highest predictability (92.6%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 17:05:39

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/an