Egyptian Arabic - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Egyptian Arabic Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
📋 Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4-gram)
- Markov chains (context of 1, 2, 3 and 4)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions
- Language Vocabulary
- Language Statistics

Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.017x | 2.93 | 0.4317% | 1,742,125 |
| 16k | 3.365x | 3.27 | 0.4814% | 1,562,212 |
| 32k | 3.703x | 3.60 | 0.5297% | 1,419,540 |
| 64k | 4.023x 🏆 | 3.91 | 0.5755% | 1,306,653 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: `دونج سارى فنان من كامبوديا.
حياته دونج سارى من مواليد يوم 1 يناير 1957.
لين...`
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁دونج ▁س ارى ▁فنان ▁من ▁كامب ود يا . ▁حياته ... (+28 more) |
38 |
| 16k | ▁دونج ▁س ارى ▁فنان ▁من ▁كامب وديا . ▁حياته ▁دونج ... (+26 more) |
36 |
| 32k | ▁دونج ▁سارى ▁فنان ▁من ▁كامبوديا . ▁حياته ▁دونج ▁سارى ▁من ... (+22 more) |
32 |
| 64k | ▁دونج ▁سارى ▁فنان ▁من ▁كامبوديا . ▁حياته ▁دونج ▁سارى ▁من ... (+22 more) |
32 |
Sample 2: `بيريباروس ( الاسم العلمى: Periparus ) هوا جنس من الطيور بيتبع قرقفيات.
لينكات ...`
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁بير يب اروس ▁( ▁الاسم ▁العلم ى : ▁per ip ... (+36 more) |
46 |
| 16k | ▁بير يب اروس ▁( ▁الاسم ▁العلمى : ▁per ip arus ... (+31 more) |
41 |
| 32k | ▁بير يب اروس ▁( ▁الاسم ▁العلمى : ▁per ip arus ... (+27 more) |
37 |
| 64k | ▁بير يب اروس ▁( ▁الاسم ▁العلمى : ▁per ip arus ... (+26 more) |
36 |
Sample 3: `قلى بيغلو ( بالفارسى قلیبیگلو ) قريه فى ايران.
لينكات برانيه
سبب التسميه ...`
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁ق لى ▁بي غل و ▁( ▁بالفارسى ▁قل ی ب ... (+21 more) |
31 |
| 16k | ▁ق لى ▁بي غلو ▁( ▁بالفارسى ▁قل ی ب ی ... (+20 more) |
30 |
| 32k | ▁ق لى ▁بي غلو ▁( ▁بالفارسى ▁قل ی بی گ ... (+19 more) |
29 |
| 64k | ▁ق لى ▁بي غلو ▁( ▁بالفارسى ▁قل ی بی گ ... (+19 more) |
29 |
Key Findings
- Best Compression: 64k achieves 4.023x compression
- Lowest UNK Rate: 8k with 0.4317% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|
| 2-gram | 6,568 🏆 | 12.68 | 1,353,863 | 27.8% | 64.6% |
| 2-gram | 384 🏆 | 8.58 | 15,875 | 59.5% | 97.6% |
| 3-gram | 11,727 | 13.52 | 2,306,233 | 23.3% | 59.5% |
| 3-gram | 2,432 | 11.25 | 170,638 | 29.7% | 70.0% |
| 4-gram | 21,664 | 14.40 | 4,880,347 | 21.3% | 54.9% |
| 4-gram | 8,554 | 13.06 | 1,045,558 | 20.0% | 54.3% |
Top 5 N-grams by Size
2-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | تصنيف : |
4,787,649 |
| 2 | مصادر تصنيف |
1,597,448 |
| 3 | لينكات برانيه |
1,294,464 |
| 4 | برانيه مصادر |
1,167,374 |
| 5 | من مواليد |
829,312 |
3-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | مصادر تصنيف : |
1,597,447 |
| 2 | برانيه مصادر تصنيف |
1,165,016 |
| 3 | لينكات برانيه مصادر |
1,164,743 |
| 4 | من مواليد يوم |
809,006 |
| 5 | . المطلع المستقيم |
668,795 |
4-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | برانيه مصادر تصنيف : |
1,165,016 |
| 2 | لينكات برانيه مصادر تصنيف |
1,162,419 |
| 3 | . لينكات برانيه مصادر |
558,227 |
| 4 | الدايره الساعيه لجرم سماوى |
445,892 |
| 5 | خط الاستوا السماوى تكون |
445,860 |
Key Findings
- Best Perplexity: 2-gram with 384
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~54% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|
| 1 | 0.8482 | 1.800 | 6.43 | 2,177,526 | 15.2% |
| 1 | 1.2448 | 2.370 | 9.40 | 4,455 | 0.0% |
| 2 | 0.3675 | 1.290 | 2.04 | 13,972,922 | 63.2% |
| 2 | 0.9830 | 1.977 | 7.64 | 41,887 | 1.7% |
| 3 | 0.1212 | 1.088 | 1.34 | 28,492,247 | 87.9% |
| 3 | 0.9327 | 1.909 | 5.31 | 320,101 | 6.7% |
| 4 | 0.0720 🏆 | 1.051 | 1.20 | 38,092,155 | 92.8% |
| 4 | 0.7558 🏆 | 1.689 | 3.71 | 1,700,014 | 24.4% |
Generated Text Samples
Below are text samples generated from each Markov chain model:
Context Size 1:
. شوف كمان رواد الشركات فى كليه سانت لورانس و كيكرز . 0 . السرعه الشعاعيه: مهندسين من تشيكوسلوفاكيا . hubble census finds galaxies at the ottoman empire and historical demog...تصنيف : anguilla australis ) و خط الاستوا السماوى تكون قيمة بعده بالموجب ( ) بيتر
Context Size 2:
تصنيف : لاعب كريكت من دومينيكا . لينكات برانيه مصادر تصنيف : قسيس كاتوليك من مملكة نيديرلاندمصادر تصنيف : مسطحات مائيه فى كندا . جغرافيا نهر وايتاهايا بيصب فى نهر اوبى . اقرالينكات برانيه مصادر تصنيف : ناس تصنيف : عالم لاهوت من المانيا ) جورج فرانسيس ماكجينيس من
Context Size 3:
مصادر تصنيف : موسم رياضى فى كورة قدم اتعمل فى پورتوجال سنة 2007 . لينكات برانيه مصادر تصنيفبرانيه مصادر تصنيف : ممثلين من البرازيل تصنيف : متعلمين فى جامعة ڤيرچينيا كومونولث و جامعة ڤيرچينيا ...لينكات برانيه مصادر تصنيف : سياسيين تصنيف : سياسيين تصنيف : سياسيين من تشيكيا تصنيف : ناس لسا
Context Size 4:
برانيه مصادر تصنيف : قرى اليمن تصنيف : قرى يافعلينكات برانيه مصادر تصنيف : مغنيين تصنيف : مغنيين امريكان تصنيف : منتجين تيليڤزيون تصنيف : مخرجين تي.... لينكات برانيه مصادر تصنيف : مسطحات مائيه فى فينلاندا
Key Findings
- Best Predictability: Context-4 with 92.8% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (1,700,014 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 1,000,000 |
| Total Tokens | 132,694,568 |
| Mean Frequency | 132.69 |
| Median Frequency | 5 |
| Frequency Std Dev | 10016.26 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | تصنيف | 4,791,431 |
| 2 | فى | 4,424,323 |
| 3 | من | 3,918,728 |
| 4 | و | 3,519,108 |
| 5 | مصادر | 1,613,116 |
| 6 | لينكات | 1,360,026 |
| 7 | برانيه | 1,299,627 |
| 8 | مواليد | 1,130,480 |
| 9 | هيا | 1,062,827 |
| 10 | اللى | 967,453 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | 1513504 | 2 |
| 2 | 412321 | 2 |
| 3 | j08004409 | 2 |
| 4 | 1545353 | 2 |
| 5 | 1073083 | 2 |
| 6 | 0566528 | 2 |
| 7 | 2103522 | 2 |
| 8 | 1579797 | 2 |
| 9 | 2051684 | 2 |
| 10 | 600674 | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.2848 |
| R² (Goodness of Fit) | 0.995303 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 44.5% |
| Top 1,000 | 75.8% |
| Top 5,000 | 85.7% |
| Top 10,000 | 88.8% |
Key Findings
- Zipf Compliance: R²=0.9953 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 44.5% of corpus
- Long Tail: 990,000 words needed for remaining 11.2% coverage
5. Word Embeddings Evaluation
Model Comparison
| Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
|---|---|---|---|---|---|
| mono_32d | 573,439 | 32 | 5.170 | 1.489 | 0.8067 🏆 |
| mono_64d | 573,439 | 64 | 5.558 | 1.367 | 0.7701 |
| mono_128d | 573,439 | 128 | 5.982 | 1.280 | 0.7047 |
| embeddings_enhanced | 0 | 0 | 0.000 | 0.000 | 0.0000 |
Key Findings
- Best Isotropy: mono_32d with 0.8067 (more uniform distribution)
- Dimension Trade-off: Higher dimensions capture more semantics but reduce isotropy
- Vocabulary Coverage: All models cover 573,439 words
- Recommendation: 100d for balanced semantic capture and efficiency
6. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 32k BPE | Best compression (4.02x) with low UNK rate |
| N-gram | 5-gram | Lowest perplexity (384) |
| Markov | Context-4 | Highest predictability (92.8%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
R² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- 🌐 Website: wikilangs.org
- 🤗 Models: huggingface.co/wikilangs
- 📊 Data: wikipedia-monthly
- 👤 Author: Omar Kamali
Generated by Wikilangs Models Pipeline
Report Date: 2025-12-27 18:23:46











